제 4 교시

<u>과학탐구 영역(화학Ⅱ)</u>

성명 수험번호 3 제 [] 선택

1. 다음은 반응 속도에 영향을 주는 요인에 대한 설명이다.

장작에 불을 붙일 때 통나무를 그대로 쓰지 않고 작게 쪼개어 사용하면 단위 시간 동안 산소와 반응하는 장작의 🗍 이/가 증가하여 연소가 빠르게 일어난다. 같은 양의 고체 반응물을 잘게 쪼개면 반응물 입자 간 충돌 횟수가 많아지므로 반응 속도가 □ 하기 때문이다.

다음 중 ③과 ⑥으로 가장 적절한 것은?

 \bigcirc

 \bigcirc

(L)

표면적 (1)

감소

표면적

증가

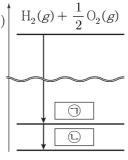
표면 장력

감소 ④ 표면 장력 증가

⑤ 활성화 에너지 증가

2. 다음은 25 °C, 1 atm에서 2가지 열화학 반응식이다.

 $\circ 2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$


 $\Delta H = -572 \text{ kJ}$

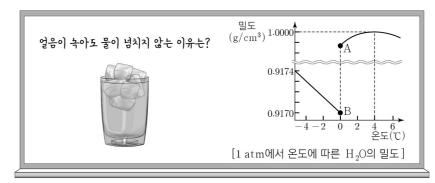
 $\circ 2H_2O(g) \rightarrow 2H_2(g) + O_2(g)$

 $\Delta H = 484 \text{ kJ}$

그림은 $25\,\mathrm{C}$, $1\,\mathrm{atm}$ 에서 $\mathrm{H}_2(\mathit{g})$ 와 $\mathrm{O}_2(\mathit{g})_{H}$ 로부터 ①과 ①이 생성될 때의 엔탈피^(kJ) 변화를 나타낸 것이다. ①과 ①은 각각 $H_{2}O(l)$ 와 $H_{2}O(g)$ 중 하나이다.

25 ℃, 1 atm에서 이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고 른 것은? (단, H와 O의 원자량은 각각 1, 16이다.)

ー<보 기>-


- ㄱ. ①은 H₂O(g)이다.
- ㄴ. $H_2O(l)$ 의 생성 엔탈피(ΔH)는 -572 kJ/mol이다.
- $_{\text{\tiny L}}$ 45 g의 $_{\text{\tiny H}}$ $_{\text{\tiny O}}(l)$ 이 모두 기화될 때 엔탈피 변화($_{\text{\tiny O}}(\Delta H)$ 는 110 kJ이다.
- ① ¬
- 2 L
- ③ ⊏
- 4 7, 5 7, 4, 5
- 3. 표는 부피가 같은 강철 용기 (가)와 (나)에 들어 있는 기체에 대한 자료이다. (가)에 들어 있는 A(g)의 양(mol)은 (나)에 들어있는 C(g)의 양(mol)의 6배이다.

용기 <u>질량(g)</u> 용기 <u>A()</u> R()		압력	온도	기체의 밀도		
5/1	A(g)	B(g)	C(g)	(atm)	(K)	(상댓값)
(가)	3x	8x	0	P	T	11
(나)	0	8 y	10y	P	4 T	9

 $\frac{y}{x} \times \frac{\text{C의 분자량}}{\text{B의 분자량}}$ 은? (단, 기체는 서로 반응하지 않는다.) [3점]

- ① $\frac{2}{5}$ ② $\frac{5}{8}$ ③ $\frac{5}{4}$ ④ $\frac{5}{2}$
- **⑤** 4

4. 다음은 물의 특성에 대한 자료와 학생과 선생님의 대화이다.

- ㅇ 학 생: 선생님! 물이 넘치지 않는 이유가 궁금해요.
- 선생님: 물 분자 사이에 존재하는 수소 결합에 의한 분자 배열 때문에 그래프와 같이 얼음이 물로 변할 때 부피가 🗇 하는 것이 주된 이유입니다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, A와 B는 각각 $H_2O(s)$, $H_2O(l)$ 중 하나이다.) [3점]

- ㄱ. '감소'는 ⑦으로 적절하다.
- L. 0℃, 1 atm에서 1 g에 들어 있는 H₂O의 분자 수는 B가 A보다 크다.
- 다. 0 ℃, 1 atm에서 $\frac{B \ 1 \ g \ G}{A \ 1 \ g \ G}$ 수소 결합의 평균 개수 > 1이다.
- 1 7
- 2 L

- 3 7, \Box 4 \Box , \Box 5 7, \Box , \Box

5. 다음은 학생 A가 수행한 탐구 활동이다.

[가설]

○ 온도가 높아질수록 화학 반응의 반응 속도는 빨라진다.

[실험 과정]

- (가) 서로 다른 온도($^{\circ}$) t_1 , t_2 , t_3 의 물 w g이 들어 있는 비커 $I \sim \coprod$ 에 물과 반응하여 $\mathrm{CO}_2(g)$ 를 발생시키는 동일한 알약을 한 알씩 각각 넣는다.
- (나) $CO_2(g)$ 발생 반응이 완결될 때까지 걸린 시간을 측정한다.

[실험 결과]

비커	I	П	Ш
물의 온도(♡)	t_1	t_2	t_3
걸린 시간(s)	6a	3a	a

A의 가설이 옳다는 결론을 얻었을 때, $I \sim III$ 의 물의 온도를 비교한 것으로 옳은 것은? (단, 반응이 진행되는 동안 각각의 물의 온도는 일정하고, a>0이다.)

- ① $t_1 > t_2 > t_3$ ② $t_1 > t_3 > t_2$ ③ $t_2 > t_3 > t_1$
- $\textcircled{4} \ \ t_3 > t_1 > t_2 \qquad \qquad \textcircled{5} \ t_3 > t_2 > t_1$

프로그램 사용 설명서

- (가) 분류하고자 하는 여러 가지 고체 결정 물질들을 입력한다.
- (나) 버튼을 누르면 버튼의 분류 기준을 충족하는 모든 물질이 선택
- (다) 여러 개의 버튼을 누르면, 눌린 버튼의 분류 기준을 모두 충족 하는 모든 물질이 선택된다. 단, 물질이 모든 분류 기준을 충족 하지 않는 경우 선택되지 않는다.

버튼	분류 기준
F1	고체 상태에서 전기 전도성이 있는 물질
F2	공유 결합으로 이루어진 물질
F3	금속 결정 물질
F4	분자 결정 물질
F5	이온 결정 물질

[프로그램 실행 예시]

- 입력한 고체 결정 물질: C(다이아몬드), C(흑연), CsCl, Cu, CO,
- | **F1** | 을 누르면 선택되는 물질: C(흑연), Cu

다음 중 ③과 ⑥으로 가장 적절한 것은?

- F2 F4
- F5
- F5

7. 다음은 A(g)와 B(g)가 반응하여 C(g)가 생성되는 반응의 열화학 반응식과 농도로 정의되는 평형 상수(*K*)이다.

$$2A(g) + B(g) \rightleftharpoons 2C(g) \quad \Delta H < 0, K$$

그림은 TK에서 실린더에 A(g)와 B(g)를 넣고 평형 상태에 도달했을 때, 각 기체의 양(mol)을 나타낸 것이다.

피스톤 A(g) 0.2 mol B(g) 0.1 mol

C(g) 0.1 mol

V L

TK에서 평형 상수 K의 값(\bigcirc)과 그림과 같은 평형 상태에서 온도를 높였을 때 새로운 평형에 도달하기까지 우세하게 진행되는 반응(心)으로

가장 적절한 것은? (단, 외부 압력은 1 atm으로 일정하고, 피스톤의 질량과 마찰은 무시한다.)

0.4~V

(L)

 \bigcirc

0.4 V

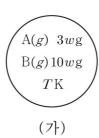
1 3 V

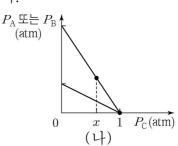
정반응 역반응

4 2.5 V 역반응 정반응

2.5 V역반응

6. 다음은 고체 결정 물질을 분류하는 프로그램 사용 설명서이다. │ 8. 다음은 25 ℃, 1 atm에서 3가지 물질에 대한 자료와 25 ℃, 1 atm 에서 3가지 결합의 결합 에너지에 대한 자료이다.


0	C(s, 흑연)→C(g) H ₂ O(g)의 생성 엔탈 ³ CH ₄ (g)의 생성 엔탈 ³			a kJ -242 kJ/mo x kJ/mol
	결합	C-H	0=0	O – H
	결합 에너지(kJ/mol)	b	498	c


이 자료로부터 구한 x는? (단, 25 \mathbb{C} , 1 atm에서 $\mathbb{C}(s, \tilde{9})$ 생성 엔탈피는 0이다.) [3점]

- \bigcirc -a-4b+4c-982 \bigcirc -a+4c-740 \bigcirc a-4b+2c-740
- 4 a-4b+2c-982 5 a-4b+4c-982
- 9. 다음은 A(g)와 B(g)로부터 C(g)가 생성되는 반응의 화학 반응식 이다.

$$3A(g) + B(g) \rightarrow 2C(g)$$

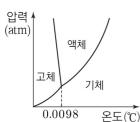
그림 (가)는 TK에서 강철 용기에 A(g)와 B(g)를 넣은 초기 상태를, (나)는 (가)에서 반응이 진행되는 동안 $A(g) \sim C(g)$ 각각의 부분 압력 $P_{\rm A} \sim P_{\rm C}$ 를 나타낸 것이다. $P_{\rm C}$ 가 x atm일 때 A(g)와 C(g)의 몰 분율은 같다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 TK로 일정하다.)

--- <보 기>-

 $\neg . x = 0.6$ 이다.

- ㄴ. $P_{\mathbb{C}}$ 가 x atm일 때 B(g)의 몰 분율은 $\frac{1}{7}$ 이다.
- c. A의 분자량 B의 분자량 = 10이다.
- ① ¬ ② ⊏
- 37, 4 4 4, 5 7, 4, 5
- **10.** 표는 물과 A(aq)의 증기 압력을 온도에 따라 나타낸 것이다.


물질	$t_1{}^{\!$	t_2 $^{\circ}$ 에서 증기 압력(atm)
물	47.5P	
A(aq)	45.6P	24 P

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 물과 A의 화학식량은 각각 18과 60이다. A는 비휘 발성, 비전해질이고, 용액은 라울 법칙을 따른다.) [3점]

---<보 기>-

- ㄱ. t₂ ℃에서 물의 증기 압력은 25*P* atm이다.
- ∟. A(aq)의 <u>용질 A의 질량(g)</u> 은 <u>5</u> 이다. 물의 질량(g)
- C. 물 207 g에 용질 A 1 mol을 녹였을 때 t₂ ℃에서 용액의 증기 압력은 23P atm이다.
- ② ㄷ
- 37. 4 4 4. 5 7. 4. 5

11. 그림은 H,O의 상평형 그림을, 표는 온도와 압력에 따른 H,O의 안정한 상의 수를 나타낸 것이다. $0.0098 < t_2 < t_1$ 이다.

압력	온도(♡)				
(atm)	t_1	t_2	t_3		
P_1	n	m+n-1	m-n		
P_2	m-1	m-n	m+1		

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

 \neg . $P_1 < P_2$ 이다.

ㄴ. t_1 °C, P_1 atm에서와 t_2 °C, P_2 atm에서의 안정한 상의 수는

ㄷ. t_3 °C, $\frac{P_1+P_2}{2}$ atm에서 안정한 상은 액체이다.

3 7, 5 4 4, 5 7, 4, 5

12. 다음은 A(g)와 B(g)가 반응하여 C(g)가 생성되는 반응의 화학 반응식과 농도로 정의되는 평형 상수(K)이다.

$$A(g) + B(g) \rightleftharpoons cC(g)$$
 K (c는 반응 계수)

표는 온도 TK에서 강철 용기에 $A(g) \sim C(g)$ 의 초기 농도를 달리하여 넣은 실험 I~Ⅲ에서 각 기체의 초기 농도와 평형에 도달하였을 때 평형 농도를 나타낸 것이다.

실험	초기 농도(M)			평형 농도(M)		
2 2	A(g)	B(g)	C(g)	A(g)	B(g)	C(g)
I	2.5	1.2	x		0.2	
П	1.3	2.0	1.0			3.0
Ш	2.0	y	0	0.5		3.0

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 TK로 일정하다.)

----<보 기>-

 $\neg c = 2$ 이다.

L. x + y = 3.1이다.

ㄷ. I의 평형 상태에서 C(g)를 첨가하면 K가 증가한다.

1 7

2 = 3 7, 4 4, 5 7, 4, 5

13. 표는 A(aq) (가)와 (나)에 대한 자료이다.

수용액	농도	부피(mL)	질량(g)	밀도(g/mL)
(가)	15 %		200	
(나)	1 M	250		1.1

(가)에 물 100 g을 추가한 후 (나) x mL를 혼합하여 만든 A(aq)의 몰랄 농도가 1.1 m일 때, x는? (단, 온도는 일정하고, A의 화학식량은 100이다.)

11

2 15

3 22

4 30

⑤ 55

14. 다음은 약염기 B의 이온화 반응식과 25℃에서의 이온화 상수 (K_b) 이다.

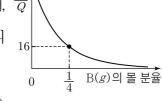
 $B(aq) + H_2O(l) \rightleftharpoons BH^+(aq) + OH^-(aq) \quad K_b = 1.0 \times 10^{-8}$

표는 25 ℃에서 B(aq) (가)와 (나)에 대한 자료이다.

수용액	B(aq)의 농도(M)	рН
(가)	0.01	x
(나)	\overline{y}	10

 $\frac{x}{y}$ 는? (단, 25℃에서 물의 이온화 상수 $(K_{\rm w})$ 는 1×10^{-14} 이다.)

① 3

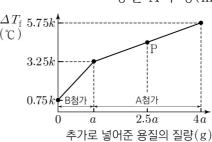

② 4 ③ 6 ④ 8

15. 다음은 A(g)로부터 B(g)와 C(g)가 생성되는 반응의 화학 반응식과 온도 T에서 농도로 정의되는 평형 상수(K)이다.

$$2A(g) \rightleftharpoons B(g) + C(g) \quad K$$

그림은 온도 T에서 VL 강철 용기에 A(g) a mol을 넣고 반응이 진행될 때, $\frac{\Lambda}{Q}$

K와 반응 지수(Q)의 비($\frac{K}{Q}$)를 B(g)의 $_{16}$ 몰 분율에 따라 나타낸 것이다.



 $\frac{\overline{gg} \otimes \overline{gg} \otimes \overline{gg} \otimes \overline{gg}}{K}$ 은? (단, 온도는 T로 일정하다.) [3점]

① $\frac{1}{20}$ ② $\frac{1}{10}$ ③ $\frac{4}{5}$ ④ 10

(5) 20

16. 그림은 t[∞], 1 atm에서 H₂O(l) 200 g에 용질 A를 녹여 만든 A(aq)에 용질 B와 A를 순서대로 넣을 때, 추가로 넣어준 용질의 질량에 따른 용액의 어는점 내림($\Delta T_{\rm f}$)을 나타낸 것이다. 물의 몰랄 내림 상수는 k \mathbb{C}/m 이고, P에서 용질 B의 $\mathfrak{S}(\mathrm{mol})$ 용질 A의 $\mathfrak{S}(\mathrm{mol})$

B의 화학식량 A의 화학식량 은? (단, A와 B는 비휘발성, 비전해질이며

 $2\frac{5}{12}$ 3 1 4 $\frac{4}{3}$

서로 반응하지 않고, 용액은 라울 법칙을 따른다.) [3점]

17. 다음은 A(g)로부터 B(g)와 C(g)가 생성되는 반응의 화학 반응식과 반응 속도식이다. k는 반응 속도 상수이다.

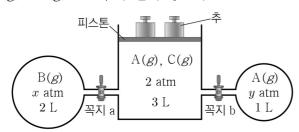
$$2A(g) \rightarrow 2B(g) + C(g)$$
 $v = k[A]$

표는 서로 다른 온도 T_1 과 T_2 에서 부피가 같은 강철 용기 (7)와 (나)에 A(g)를 각각 넣고 반응시킬 때, $\frac{C(g)$ 의 부분 압력(atm) $}{\sqrt{2}}$ 전체 기체의 압력(atm) 반응 시간에 따라 나타낸 것이다. (7)와 (4)의 온도는 각각 T_1 과 T_2 로 일정하다. (나)에서 3t일 때, $\frac{A(g)$ 의 질량(g)}{C(g)의 질량(g)} = \frac{9}{28}이다.

반응 시간		0	t	2t	3t
C(<i>g</i>)의 부분 압력(atm)	(가)	0	x	$\frac{15}{47}$	
전체 기체의 압력(atm)	(나)	0			$\frac{7}{23}$

x × B의 분자량 A의 분자량 은? (단, 역반응은 일어나지 않는다.) [3점]

- ① $\frac{5}{33}$ ② $\frac{11}{27}$ ③ $\frac{27}{55}$ ④ $\frac{8}{9}$ ⑤ $\frac{54}{55}$


18. 다음은 기체 반응 실험이다.

[화학 반응식]

 \circ A(g) + 2B(g) \rightarrow cC(g) (c는 반응 계수)

[실험 과정]

(7) 온도 TK에서 꼭지로 분리된 실린더와 <math>2개의 강철 용기에 $A(g) \sim C(g)$ 를 그림과 같이 넣는다.

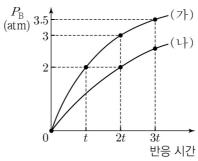
- (나) 꼭지 a를 열어 한 기체가 모두 소모될 때까지 반응시키고 충분한 시간이 흐른 후 꼭지 a를 닫는다.
- (다) 추를 1개만 제거한 후 꼭지 b를 열어 B(g)가 모두 소모될 때까지 반응시킨다.

[실험 결과]

 \circ (가)에서 실린더 속 C(g)의 몰 분율은 $\frac{2}{3}$ 이다.

○ 각 과정 후 실린더 속 C(g)의 부분 압력과 기체의 부피

과정	(나)	(다)
실린더 속 C(<i>g</i>)의 부분 압력(atm)	16 9	z
실린더 속 기체의 부피(L)	$\frac{5}{2}$	$\frac{11}{3}$


 $\frac{x}{y \times z}$ 는? (단, 온도와 외부 압력은 각각 TK와 1 atm으로 일정 하고, 2개의 추의 질량은 같으며 피스톤의 질량과 마찰 및 연결관의 부피는 무시한다.) [3점]

- ① $\frac{9}{41}$ ② $\frac{18}{41}$ ③ $\frac{36}{41}$ ④ $\frac{42}{41}$ ⑤ $\frac{64}{41}$

19. 다음은 A(g)로부터 B(g)가 생성되는 반응의 화학 반응식이다.

$$A(g) \rightarrow 2B(g)$$

그림은 부피가 같은 강철 용기 (가)와 (나)에 A(g)를 넣은 후, 반응이 진행될 때 반응 시간에 따른 용기 속 B(g)의 부분 압력 (P_B) 을 나타낸 것이다. (7)와 (1)의 온도는 각각 T_1 , T_2 로 일정하다.

강철 용기	(가)	(나)
2t일 때	1	1
A(g)의 몰 분율	$\overline{7}$	3

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 역반응은 일어나지 않는다.)

-----<보 기>-

- \neg . $T_1 < T_2$ 이다.
- ㄴ. 2t일 때, A(g)의 부분 압력(atm) 은 (나)에서가 (가) B(g)의 부분 압력(atm) 에서의 3배이다.
- C. 3t일 때, (나)에서 B(g)의 부분 압력은 2.5 atm이다.
- ① L

20. 표는 25℃에서 x M 약산 HA(aq)와 y M 약산 HB(aq)에 각각 $0.5~\mathrm{M}$ NaOH(aq)을 혼합하여 만든 수용액 $(7)\sim(7)$ 에 대한 자료이다. $\alpha = \frac{[A^-]}{[HA] + [A^-]}$ 이고, $\beta = \frac{[B^-]}{[HB] + [B^-]}$ 이다.

		혼합 전 수용액의 부피(mL)				
	수용액	x M	y M	0.5 M	α 또는 β	рΗ
		HA(aq)	HB(aq)	NaOH(aq)		
	(가)	150	0	100	$\frac{a}{24}$	b
	(나)	0	100	40	$\frac{a}{10}$	
	(다)	0	180	80	$\frac{16}{9a}$	b+1

 $\frac{y}{x}$ imes $\frac{25\,\mathrm{C}\,\mathrm{old}}{25\,\mathrm{C}\,\mathrm{old}}$ HA의 이온화 상수 (K_{a}) 는? (단, 수용액의

온도는 25℃로 일정하고, 혼합 수용액의 부피는 혼합 전 각 수용액의 부피의 합과 같다.) [3점]

- ① $\frac{1}{10}$ ② $\frac{5}{8}$ ③ $\frac{4}{5}$ ④ 4

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인