2026학년도 대학수학능력시험 대비

2025학년도 10월 고3 전국연합학력평가 정답 및 해설

● 과학탐구 영역 ●

※ 본 전국연합학력평가는 17개 시도 교육청 주관으로 시행되며, 해당 자료는 EBSi에서만 제공됩니다. 무단 전재 및 재배포는 금지됩니다.

화학Ⅱ 정답

1	2	2	4	3	4	4	(5)	5	1
6	5	7	2	8	1	9	5	10	3
11	5	12	3	13	4	14	3	15	2
16	1	17	(5)	18	4	19	2	20	3

해 설

1. [출제의도] 고체의 결정 구조를 이해한다. Li은 금속 결정이고, Au은 면심 입방 구조이다.

2. [출제의도] 분자 사이의 상호 작용을 이해한다. (가)는 무극성 분자이고, 극성 분자인 (나)보다 분자 량이 작으므로, (가)의 기준 끓는점은 (나)보다 낮다.

3. [출제의도] 화학 전지를 이해한다.

L. A 전극에서 산화 반응이 일어나므로, 금속의 이온화 경향은 A > Cu이다.

4. [출제의도] 반응 속도에 영향을 주는 요인을 이해한다

정촉매는 활성화 에너지를 낮추어 반응 속도를 빠르 게 하고, 촉매를 사용해도 반응 엔탈피는 일정하다.

5. [출제의도] 물의 특성을 이해한다.

(가)는 $\mathrm{H_2O}(s)$, (나)는 $\mathrm{H_2O}(l)$ 이고, $t_2 > t_3 > t_1$ 이다.

6. [출제의도] 전기 분해를 이해한다.

ㄱ. 환원 반응이 일어나는 전극 A는 (-)극이다. C. (-)극에서 Cu가 생성되었으므로 Cu²+은 Cu²+은 Cu²+은 환원되기 쉽다.

7. [출제의도] 1차 반응을 이해한다.

반감기는 (가)와 (나)에서 모두 t이다.

[오답풀이] ㄱ. (가)에서 t일 때 [B]가 2M이므로 A의 초기 농도는 2M이다. ㄷ. (가)에서 t일 때 [A] = 1M, (나)에서 2t일 때 [A] = 0.25M이다.

8. [출제의도] 혜스 법칙을 이해한다.

9. [출제의도] 상평형 그림을 이해한다.

 P_1 > 삼중점의 압력 > P_2 이고, t_2 > 삼중점의 온도 > t_1 이다.

10. [출제의도] 묽은 용액의 성질을 이해한다.

물을 추가하기 전 A의 양(mol)을 n이라고 하면 물의 양(mol)은 19n이다. (가)에서 A의 몰 분율이 $\frac{1}{25}$ 이므로 추가한 물 15w g의 양(mol)은 5n이다. 따라서 (나)에서 $x=\frac{290}{3}$ 이다. 물 15w g과 A 10w g의 양(mol)이 각각 5n과 n이므로 A의 화학식량은 60이다.

11. [출제의도] 평형 이동을 이해한다.

(가)에 B 1 mol을 추가하였으므로 (가)에서는 역반

응이 우세하게 일어나고, (나)에서는 정반응이 우세하게 일어난다. (가)에 들어 있는 기체는 $3 \mod 2$ 다 많고 (나)에 들어 있는 기체는 $2 \mod 2$ 다 적으므로, (나)에 들어 있는 기체의 부피는 0.8 VL보다 작다.

12. [출제의도] 용액의 농도를 이해한다.

A의 양(mol)은 (가)~(다)에서 각각 0.05, 0.25, 0.2 이고, 물의 질량(g)은 (가)~(다)에서 각각 100, 125, 192이다. 따라서 x = 83이다.

13. [출제의도] 기체의 성질을 이해한다.

기체의 분자량은 $\frac{wT}{PV}$ 에 비례하므로 분자량의 비는 $X:Y=\frac{3T}{1.5}:\frac{T}{1.25}=5:2$ 이고, 기체의 몰비는 X:Y=2:5이다. 기체의 부피는 $\frac{nT}{P}$ 에 비례하고, TK, 1 atm에서 Y의 부피와 3TK, $\left(1+\frac{a}{760}\right)$ atm에서 X의 부피가 같으므로 a=152이다.

14. [출제의도] 열화학 반응식을 이해한다.

 $\mathrm{CCl}_4(l) \to \mathrm{CCl}_4(g)$ 의 $\Delta H = 30 \,\mathrm{kJ}$ 이다. 따라서 -30 = $(4a+2\times240)-(4b+2\times440)$ 이다.

15. [출제의도] 산과 염기의 성질을 이해한다.

(가)에서 혼합한 NaOH과 HA의 부피비가 1:2이므로 $[HA] = [A^-]$ 이다. (나)에서 혼합한 NaOH과 HB의 부피비가 1:4이므로 $\frac{[B^-]}{[HB]} = \frac{1}{3}$ 이다. 두 용액의 pH가 같으므로, $\frac{HB의}{HA의} \frac{K_a}{K} = \frac{1}{3}$ 이다.

16. [출제의도] 1차 반응을 이해한다.

I 에서 He의 양(mol)을 m이라고 하면 A의 양(mol)은 2m이고, 반감기는 t이므로 $x=\frac{2}{9}$ 이다. II 에서 t일 때 He의 양(mol)을 n이라고 하면 다른 기체의 양은 7n이고, 2t에서 다른 기체의 양이 $\frac{31}{4}n$ 이되므로 반감기가 $\frac{t}{2}$ 이다. 따라서 $y=\frac{1}{5}$ 이다.

17. [출제의도] 화학 평형을 이해한다.

평형 상수는 T_2 K일 때가 T_1 K일 때보다 크다. (가) 의 평형 상태에서 A와 B의 양(mol)은 모두 $\frac{4}{3}$ 이고, (나)의 평형 상태에서 A와 B의 양(mol)은 각각 1, 2이다. T_1 K에서 $K=\frac{2}{3}$ 이고, (나)에서 실린더 속기체의 부피는 $\frac{3}{4}$ L이므로 T_2 K에서 $K=\frac{16}{3}$ 이다.

18. [출제의도] 1차 반응을 이해한다.

넣어 준 A의 양(mol)을 32n이라고 하면 반응 시간에 따른 기체의 양은 다음과 같다.

반응 시간(s)	0	0.5t	t		2t
A의 양(mol)	32n	16n	8n	6n	2n
B의 양(mol)		32n	48n	52n	60n
C의 양(mol)	n	9n	13n	14n	16n

19. [출제의도] 산 염기 평형을 이해한다.

넣어 준 HCl의 부피(mL)가 $1.5 V_1$ 일 때 pOH = 5.0이므로 $V_1 = \frac{50}{3}$ 이다. V_2 일 때 $\frac{[\mathrm{BH}^+]}{[\mathrm{B}]} = 4$ 이므로 $V_2 = 40$ 이다.

20. [출제의도] 기체의 성질을 이해한다.

(가)에서 A, B, D의 양(mol)을 각각 $\frac{2}{3}xPN$, PN, 2N이라고 하면 (나) 과정 후 I 과 II에 들어 있는 A, C의 양(mol)은 각각 $\left(\frac{2}{3}xP-2P\right)N$, 2PN이고, $x=\frac{9}{2}$ 이다. II에 들어 있는 C의 양(mol)은 $\frac{6}{5}PN$ 이고, (다) 과정 후 II와 실린더에 들어 있는 A, D, F의 양(mol)은 각각 $\frac{3}{5}PN$, $\left(2-\frac{2}{5}P\right)N$, $\frac{2}{5}PN$ 이 므로 $P=\frac{5}{3}$ 이다.