생 명 과

과학탐구 영역(생명과학 I)

성명 수험번호 제 () 선택

1. 다음은 습지에 사는 식물 A에 대한 자료이다.

A는 → 광합성을 하지만 곤충을 잡아서 부족 한 영양분을 보충한다. ① A는 곤충이 잎 안의 감각모를 건드리면 빠르게 잎을 닫아 곤충을 가 두고, 소화 효소를 분비해 🗅 곤충을 분해한다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

----- < 보 기 > --

- ㄱ. ⊙에 효소가 이용된다.
- ㄴ. ⓒ은 자극에 대한 반응의 예에 해당한다.
- ㄷ. ②에서 이화 작용이 일어난다.

2. 표는 사람에서 영양소 A와 B가 세 $\sqrt{\text{노폐물}}$ 포 호흡에 사용될 때 노폐물 ①과 ①의 생성 여부를 나타낸 것이다. A 와 B는 지방과 단백질을 순서 없이 (○: 생성됨, ×: 생성 안됨)

В	0	0
A	0	×
노폐물 영양소	7	©

나타낸 것이고, ⊙과 ⓒ은 H,O와 암모니아를 순서 없이 나타낸

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

----- < 보 기 > --

- ¬. B는 지방이다.
- ㄴ. 호흡계를 통해 ○이 몸 밖으로 배출된다.
- ㄷ. 소화계에서 ①이 요소로 전환된다.

- 3. 다음은 어떤 과학자가 수행한 탐구이다.
 - (가) [→] 게가 홍합의 껍데기를 부수고 잡아먹는 것을 관찰하 고, 게가 있을 때 홍합은 더 두꺼운 껍데기를 가질 것 이라고 생각했다.
 - (나) 같은 수의 홍합이 들어 있는 통 A와 B를 준비하고, 하 나의 통에만 게를 넣었다. 일정 시간이 지난 후 A와 B 각각에 들어 있는 ①홍합의 껍데기 두께를 측정했다.
 - (다) 껍데기의 평균 두께는 A에 들어 있는 홍합이 B에 들어 있는 홍합보다 두꺼웠다.
 - (라) 게가 있을 때 홍합은 더 두꺼운 껍데기를 갖는다는 결 론을 내렸다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

---- < 보 기 > -

- ㄱ. ⑦은 포식과 피식에 해당한다.
- L. C)은 조작 변인이다.
- 다. 게를 넣은 통은 B이다.

4. 사람 A~C는 모두 혈중 티록신 농도가 정상적이지 않다. 표 (가)는 A~C의 혈중 티록신 농도가 정상적이지 않은 원인과, 혈중 티록신과 TSH의 농도를 나타낸 것이고, (나)는 원인 I~Ⅲ 을 순서 없이 나타낸 것이다. □은 '+'와 '-' 중 하나이며, @는 '많음'과 '적음' 중 하나이다.

사람	원인	혈중	농도
기급	견근	티록신	TSH
A	Ι	_	9
В	П	+	+
С	Ш	+	_

(+: 정상보다 높음, -: 정상보다 낮음) (가)

윤	원인(I ~	Ш)	
• 갑상샘에	이상이	생겨	티록신
분비량이	정상보다	나 (@	a))

- •시상 하부에 이상이 생겨 TRH 분비량이 정상보다 많음
- 뇌하수체 전엽에 이상이 생겨 TSH 분비량이 정상보다 적음

(나)

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.) [3점]

----< 보기 > -

- ㄱ. ⑦은 '+'이다.
- ㄴ. ⓐ는 '적음'이다.
- 다. Ⅱ는 '시상 하부에 이상이 생겨 TRH 분비량이 정상보다 많음'이다.

- 5. 사람의 질병에 대한 옳은 설명만을 <보기>에서 있는 대로 고 른 것은?

— < 보 기 > -

- ㄱ. 헌팅턴 무도병은 유전병이다.
- ㄴ. 말라리아의 병원체는 곰팡이다.
- ㄷ. 독감의 병원체는 스스로 물질대사를 한다.

- 6. 표 (가)는 질소 순환 과정에서 나타나는 두 가지 특징을, (나) 는 (가)의 특징 중 A, B, 탈질산화 작용이 갖는 특징의 개수를 나타낸 것이다. A와 B는 질산화 작용과 질소 고정 작용을 순서 없이 나타낸 것이다.

특징
• ⓐ <u>세균이 관여한다.</u>
• 암모늄 이온(NH ₄ ⁺)이 질산 이온
(NO ₃ ⁻)으로 전환된다.

<u></u>	$\rm NH_4$)01	결산	이근
로	전환	린다.		
	(가)			

구분	특징의 개수
A	2
В	1
탈질산화 작용	Э

(나)

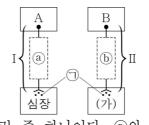
이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

-----< 보 기 > --

- ¬. A는 질소 고정 작용이다.
- L. B는 특징 @를 갖는다.
- ㄷ. ①은 0이다.
- ① ¬

7. 사람 A와 B는 탄수화물, 단백질, 지방으로만 에너지를 섭취한다. $\mid 10$. 다음은 민말이집 신경 A \sim C의 흥분 전도와 전달에 대한 자료 표 (가)는 A와 B의 영양소별 에너지 섭취량과 에너지 소비량을, (나)는 A와 B에서 에너지 섭취량과 에너지 소비량이 일정 기간 (가)와 같이 지속되었을 때 A와 B의 체중 변화를 나타낸 것이다. □과 □은 '감소함'과 '증가함'을 순서 없이 나타낸 것이다.

시라	에너지 섭취량(kcal)			에너지		
사람	탄수화물	단백질	지방	소비량(kcal)		
A	1200	300	500	2400		
В	1800	50	?	2350		
	(가)					


체중 사람 변화 Α (나)

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.) [3점]

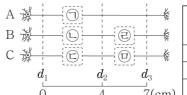
----- < 보 기 > -

- ㄱ. 은 '감소함'이다.
- ㄴ. 지방으로 섭취한 에너지양은 A가 B보다 많다.
- ㄷ. 에너지 소비량에는 기초 대사량이 포함된다.
- ① 7 ② ∟

- 3 = 4 7, = 5 =, =
- 8. 그림은 사람의 중추 신경계에 속한 A와 B로부터 심장과 (가)에 연결된 자율 신경 Ⅰ과 Ⅱ를 나타낸 것이다. A와 B는 척수 I(@ 와 뇌줄기를 순서 없이 나타낸 것이다. (가)는 방광과 홍채 중 하나이고, 신경 전 달 물질 ①은 아세틸콜린과 노르에피네프린 중 하나이다. @와

ⓑ에 각각 하나의 신경절이 있다. 이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

- ----- < 보 기 > --
- ¬. 뇌교는 A에 속한다.
- ㄴ. ①은 심장 박동을 촉진한다.
- 다. Ⅱ는 신경절 이전 뉴런이 신경절 이후 뉴런보다 길다.


- 9. 다음은 상호 작용 A~C에 대한 자료이다. A~C는 기생, 상리 공생, 종간 경쟁을 순서 없이 나타낸 것이다.
 - A ~ C는 모두 ① <u>종 사이의 상호 작용</u>이다.
 - A의 관계에 있는 두 종은 모두 손해를 입고, B의 관계에 있는 두 종은 모두 이익을 얻는다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

----- < 보 기 > -

- ㄱ. 분서는 ⑦에 해당한다.
- L. A는 종간 경쟁이다.
- ㄷ. 겨우살이가 다른 식물의 줄기에 뿌리를 박아 물과 양분을 빼앗는 것은 C의 예에 해당한다.
- \bigcirc (2) L
- - 3 7, 5 4 4, 5 5 7, 6, 5

- 이다.
 - 그림은 A~C의 지점 d₁~d₂의 위치를, 표는 A의 P에, B 와 C의 Q에 역치 이상의 자극을 동시에 1회 주고 경과된 시간이 3 ms일 때 $d_1 \sim d_3$ 에서의 막전위를 나타낸 것이다. P와 Q는 각각 $d_1 \sim d_3$ 중 하나이고, $\bigcirc \sim \square$ 중 두 곳에만 시냅스가 있으며, ②과 ② 중 한 곳에만 시냅스가 있다. ⓐ ~ ⓒ는 −80, −70, −60을 순서 없이 나타낸 것이다.

신경	3 ms일 때 막전위(mV)			
7.6	d_1	d_2	d_3	
Α	a	b	c	
В	c	a	0	
С	c	a	b	

- A와 B를 구성하는 모든 뉴런의 흥분 전도 속도는 x로 같
 - 고, C를 구성하는 모든 뉴런의 흥분 전도 속도는 y로 같다. x와 y는 2 cm/ms와 3 cm/ms를 순 (mV) 서 없이 나타낸 것이다.
 - 시간(ms) 자극
- A ~ C 각각에서 활동 전위가 발생하였을 때, 각 지점에서의 막전위 변화는 그림과 같다.
- 이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, A~C에서 흥분의 전도는 각각 1회 일어났고, 휴지 전위는 -70 mV이다.) [3점]

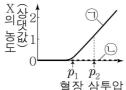
--- < 보 기 > -

- ¬. x는 3 cm/ms이다.
- ㄴ. ٰ 교에 시냅스가 있다.
- ㄷ. 3 ms일 때 B의 d_3 에서 재분극이 일어나고 있다.

- 11. 사람의 유전 형질 (가)는 대립 유전자 A와 a에 의해, (나)는 대 립유전자 B와 b에 의해 결정된다. (가)와 (나)의 유전자는 서로 다 른 상염색체에 있다. 표는 사람 P 와 Q의 세포 I~IV에서 대립유전 자 A, ①, ⓒ의 유무와 A와 b의

Шπ	대	A 1 L		
세포	Α	\bigcirc	Ù	A+b
Ι	5	0		4
Π	0	0	0	2
\coprod	0	0	×	6
IV	×	a	0	1

(○: 있음, ×: 없음)


DNA 상대량을 더한 값(A+b)을 나타낸 것이다. ①과 ①은 각각 a, B, b 중 하나이다. I 은 P의 세포이고, Ⅱ ~ IV 중 1개는 P의 세포이며, 나머지 2개는 Q의 세포이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이와 교차는 고려하지 않으며, A, a, B, b 각각의 1 개당 DNA 상대량은 1이다.) [3점]

一 < 보 기 > -

- ㄱ. @는 '○'이다.
- ㄴ. Ⅱ에서 a, B, b의 DNA 상대량을 더한 값은 3이다.
- c. P에게서 a와 b를 모두 갖는 생식세포가 형성될 수 있다.
- ① ¬
 - ② ⊏
- 3 7, 6 4 6, 5 7, 6, 6

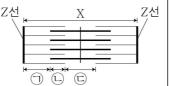
12. 그림은 정상인 ①과 호르몬 X가 정상보다 X (상 2 의 분비되는 사람 ⓒ에서 혈장 삼투압에 돌값 1 따른 혈중 X의 농도를 나타낸 것이다. X는 뇌하수체 후엽에서 분비된다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.) [3점]

 <	보	フ	>	

- ㄱ. 콩팥은 X의 표적 기관이다.
- ㄴ. \bigcirc 에서 오줌 삼투압은 p_1 일 때가 p_2 일 때보다 낮다.
- ㄷ. p_2 일 때 단위 시간당 오줌 생성량은 \bigcirc 에서가 \bigcirc 에서보다 적다.

구분	\bigcirc	Ū	€
I의 적혈구	a	+	_
Ⅱ의 적혈구	_	3	_
Ⅲ의 적혈구	+	_	+
(+: 응집됨	, -:	응집	안 됨)


각각 서로 다르며, I의 혈장에 응집소 α 가 있다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? [3점]

— < 보기 > -

- ㄱ. @는 '+'이다.
- ㄴ. ⓒ은 Ⅱ의 혈장이다.
- ㄷ. Ⅲ의 ABO식 혈액형은 A형이다.

- 14. 다음은 골격근의 수축 과정에 대한 자료이다.
 - 그림은 근육 원섬유 마디 X의 Z선 구조를 나타낸 것이다. X는 좌우 대칭이다.

- 구간 ①은 액틴 필라멘트만 있는 ① Û Ü 부분이고, ⑥은 액틴 필라멘트와 마이오신 필라멘트가 겹치는 부분이며, ⑥은 마이오신 필라멘트만 있는 부분이다.
- 표는 골격근 수축 과정의 세 시점 $t_1 \sim t_3$ 일 때 ⑦, ④, ⑤, x 각각의 길이를 나타낸 것이다. ⑦ x ©는 x 이 나타낸 것이며, ⓐ와 ⓑ는 모두 0보다 크다.

시점	길이(µm)			
	7	Ÿ	4	X
t_1	?	0.7	a	3.0
t_2	(a)+(b)	(a)+(b)	?	?
t_3	(b)	a	?	2.4

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

_	<	爿	7]	>	-
	_				

ㄱ. ⓑ는 0.2이다.

1 7

L. t₂일 때 X의 길이는 2.8 μm이다.

2 =

- □. t₁일 때 □의 길이와 t₂일 때 ☞의 길이는 같다.
 - 3 7, 4 4 4, 5 7, 4, 5

15. 표는 특정 형질에 대한 유 전자형이 HH인 어떤 사람의 세포 I과 Ⅱ에서 핵막 소실 여부와 H의 DNA 상대량을

세포	핵막 소실 여부	H의 DNA 상대량	
I	소실됨	a	
П	소실되지 않음	(b)	

나타낸 것이다. I 과 II는 체세포의 세포 주기 중 M기의 중기와 G_1 기에 각각 관찰되는 세포를 순서 없이 나타낸 것이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않으며, H의 1개당 DNA 상대량은 1이다.)

--- < 보기 >

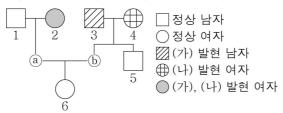
- ¬. Ⅰ은 G₁기에 관찰되는 세포이다.
- ㄴ. Ⅱ에 뉴클레오솜이 있다.
- ㄷ. @는 ⓑ의 2배이다.

16. 다음은 어떤 가족의 유전 형질 (가)와 (나)에 대한 자료이다.

- (가)는 대립유전자 A와 a에 의해, (나)는 대립유전자 B와 b에 의해 결정된다. A는 a에 대해, B는 b에 대해 각각 완전 우성이다.
- (가)와 (나) 중 하나는 우성 형질이고, 나머지 하나는 열성 형질이며, (가)의 유전자와 (나)의 유전자 중 하나는 상염색체에, 나머지 하나는 X 염색체에 있다.
- 표는 이 가족 구성원에게서 (가)와 (나)의 발현 여부를 나타낸 것이다. ⓐ와 ⓑ는 '○'와 '×'를 순서 없이 나타 낸 것이다.

구성원	(가)	(나)	
아버지	a	×	
어머니	0	×	
자녀 1	b	×	
자녀 2	×	?	
자녀 3	0	0	

- 이 가족 구성원의 체세포 1개 (○: 발현됨, ×: 발현 안됨) 당 a의 DNA 상대량을 모두 더한 값은 체세포 1개당 A의 DNA 상대량을 모두 더한 값의 3배이다.
- 부모 중 한 명의 생식세포 형성 과정에서 염색체 비분리가 1회 일어나 염색체 수가 비정상적인 생식세포 P가 형성되었고, 나머지 한 명의 생식세포 형성 과정에서 대립유전자 ①이 대립유전자 ①으로 바뀌는 돌연변이가 1회 일어나 ①을 갖는 생식세포 Q가 형성되었다. ③과 ①은(가)와(나)중 한 가지 형질을 결정하는 서로 다른 대립유전자이다.
- P와 Q가 수정되어 자녀 3이 태어났으며, 자녀 3은 클라인 펠터 증후군의 염색체 이상을 보인다.
- 자녀 3을 제외한 이 가족 구성원의 핵형은 모두 정상이다.


이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이와 교차는 고려하지 않으 며, A와 a 각각의 1개당 DNA 상대량은 1이다.) [3점]

-----< 보 기 > --

- ㄱ. (가)는 우성 형질이다.
- ㄴ. P는 어머니에게서 형성되었다.
- ㄷ. ①은 b이다.

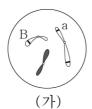
 17. 다음은 어떤 집안의 유전 형질 (가)와 (나)에 대한 자료이다.

- (가)는 대립유전자 H와 h에 의해. (나)는 대립유전자 T와 t에 의해 결정된다. H는 h에 대해, T는 t에 대해 각각 완 전 우성이다.
- (가)의 유전자와 (나)의 유전자는 같은 염색체에 있다.
- 가계도는 구성원 @와 ⑤를 제외한 구성원 1~6에게서 (가)와 (나)의 발현 여부를 나타낸 것이다.

○ 표는 구성원 2, 4, @, 5에서 체세포 1개당 h와 T의 DNA 상대량을 나타낸 것이다. ○~□은 0, 1, 2를 순서 없이 나타낸 것이다.

구성원	2	4	a	5	
DNA 상대량	h	9	Ĺ)	?	E
DNA 정대당	Т	1	?	Ĺ)	E

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이와 교차는 고려하지 않으며, H, h, T, t 각각의 1 개당 DNA 상대량은 1이다.) [3점]


-----< 보 기 > -

- ㄱ. (L)은 1이다.
- ㄴ. 6의 (가)의 유전자형은 이형 접합성이다.
- ㄷ. 6의 동생이 태어날 때, 이 아이에게서 (가)와 (나) 중 (가)만 발현될 확률은 $\frac{1}{4}$ 이다.

 \bigcirc (2) L ③ ⊏ ④ ¬. ∟ ⑤ ¬. ⊏

18 어떤 동물 종(2n=6)의 유전 형질 ②는 3쌍의 대립유전자 A 와 a, B와 b, D와 d에 의해 결정된다. 표는 이 동물 종의 개체 P와 Q의 세포 I~IV에서 대립유전자 A, a, B, b, D, d의 DNA 상대량을, 그림은 세포 (가)와 (나) 각각에 들어 있는 모든 염 색체와 일부 유전자를 나타낸 것이다. I~Ⅳ 중 2개는 P의 세포 이고, 나머지 2개는 Q의 세포이며, (가)와 (나)는 각각 I~Ⅳ 중 하나이다. P는 수컷이고 성염색체는 XY이며, Q는 암컷이고 성염색체는 XX이다.

Шπ	DNA 상대량					
세포	A	a	В	b	D	d
I	1	?	1	0	0	
Π	?	?	1	?		0
Ш	0	2	0	Ĺ.	0	2
IV	2	0	?	2	?	2

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이와 교차는 고려하지 않으며, A, a, B, b, D, d 각각 의 1개당 DNA 상대량은 1이다.)

< 보기 > -

- ㄱ. (나)는 Ⅰ이다.
- ㄴ. ①+①=2이다.
- ㄷ. Q의 ⑦의 유전자형은 AaBbDd이다.
- 3) 7, 6 4) 6, 5 7, 6, 5 ② ⊏ \bigcirc

19. 다음은 사람의 유전 형질 (가)와 (나)에 대한 자료이다.

- (가)는 3쌍의 대립유전자 A와 a, B와 b, D와 d에 의해 결 정된다. (가)의 표현형은 유전자형에서 대문자로 표시되는 대립유전자의 수에 의해서만 결정되며, 이 대립유전자의 수가 다르면 표현형이 다르다.
- (나)는 1쌍의 대립유전자에 의해 결정되며, 대립유전자에 는 E, F, G가 있다. (나)의 표현형은 4가지이며, (나)의 유전자형이 EE인 사람과 EG인 사람의 표현형은 같고, 유 전자형이 FF인 사람과 FG인 사람의 표현형은 같다.
- A와 a, B와 b는 9번 염색체에, D와 d는 11번 염색체에 있고, E, F, G는 9번 염색체와 11번 염색체 중 하나에 있다.
- 남자 P의 유전자형은 AaBbDdEG이고, 여자 Q의 유전자형 은 AaBbDdFG이며, Q에게서 A, B, D, F를 모두 갖는 난 자가 형성될 수 있다.
- P와 Q 사이에서 ⓐ가 태어날 때, ⓐ의 (가)와 (나)의 표 현형이 모두 P와 같을 확률은 $\frac{1}{16}$ 이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이와 교차는 고려하지 않는다.) [3점]

---- < 보 기 > -

- ㄱ. (나)의 유전자는 11번 염색체에 있다.
- ㄴ. ②에게서 나타날 수 있는 (가)의 표현형은 최대 5가지이다.
- 다. ⓐ가 유전자형이 AaBbddGG인 사람과 (가)와 (나)의 표 현형이 모두 같을 확률은 $\frac{1}{8}$ 이다.

 \bigcirc ② L 37, 5 4 4, 5 7, 6, 5

20. 표는 방형구법을 이용하여 지역 Ⅰ과 Ⅱ의 식물 군집을 조사 한 결과를 나타낸 것이다.

지역	종	개체 수	상대 빈도(%)	상대 피도(%)	중요치
	A	15	30	45	?
т	В	?	40	35	Ī
1	С	10	20	15	55
	D	5	10	5	25
	A	?	20	15	Ĺ.
П	В	?	20	20	Ĺ.
	С	14	35	40	?
	D	12	25	?	80

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, A~D 이외의 종은 고려하지 않는다.)

ㅡ < 보 기 > -

- ㄱ. B와 C의 개체 수의 합은 I에서가 Ⅱ에서보다 작다.
- L. Ⅱ의 식물 군집에서 우점종은 C이다.
- ㄷ. ①+ⓒ=170이다.
- 37, 5 4 4, 5 57, 4, 5 ① ¬ 2 L
 - * 확인 사항
 - 답안지의 해당란에 필요한 내용을 정확히 기입(표기) 했는지 확인하시오.