화학 🛚 정답

1	5	2	4	3	3	4	3	5	4
6	4	7	2	8	3	9	2	10	1
11	(5)	12	(5)	13	1	14	3	15	2
16	3	17	5	18	5	19	2	20	1

화학 I 해설

1. [출제의도] 탄소 화합물의 유용성과 열의 출입 적용하기

①은 탄소 화합물이며 연소 반응은 발열 반응이다. ①과 물이 반응하여 열을 방출한다.

2. [출제의도] 전자 배치 모형 분석하기

X는 16족 원소이고, Z는 플루오린(F)이다. X와 Y는 1:1로 결합하여 안정한 화합물을 형성한다.

3. [출제의도] 전자 배치 자료 이해하기

X~Z는 각각 P, O, Si이다. 원자가 전자 수는 X와 Y가 각각 5, 6이고, Y와 Z는 다른 주기 원소이다. 원자가 전자가 느끼는 유효 핵전하는 X > Z이다.

4. [출제의도] 화학 반응식 이해하기

XY와 Y2가 반응하여 실린더에 XY2와 XY가 존재하므로 생성물(XY2)은 1가지이다. 화학 반응식은 $2XY + Y_2 \rightarrow 2XY_2$ 이므로 1 mol의 Y_2 가 반응할 때 생성되는 XY2의 양은 2 mol이다. 모형 속 입자 1개를 N mol이라 하면 다음과 같다.

	2XY	+	Y_2	\rightarrow	$2\mathrm{XY}_2$
반응 전	6N		2N		
반응	-4N		-2N		4N
바은 호	2N				4N

따라서 반응 전과 후 전체 기체의 양(mol)은 각각 8N, 6N이다. 반응 후 전체 기체의 양(mol)이 6N 일 때 전체 기체의 부피가 12 V이므로 x = 16 V이다.

5. [출제의도] 분자의 극성 가설 설정하기

중심 원자가 1개인 분자에서 중심원자에 비공 유 전자쌍이 없으면서 무극성인 분자(句)는 CCl4, 극성인 분자(①)는 CH,O가 적절하다.

6. [출제의도] 몰과 화학식량 결론 도출하기

A와 B의 화학식량이 각각 2a, 3a이고, 몰농도

(M) 비는
$$A(aq)$$
 : $B(aq) = \frac{x}{2a}$: $\frac{3w}{3a} = 4:1$ 이므로 $x = 4w$ 이다.

7. [출제의도] 분자의 구조 결론 도출하기

X~Z는 각각 C, N, F이고, (가)~(다)는 각각 HCN, NH3, CHF3이다. (가)의 분자 구조는 직선형이고 중심 원자에 비공유 전자쌍이 있는 분자는 1가지 (NH_3) 이다. (다)에서 전기 음성도는 <math>Z > X 이므로 Z는 부분적인 음전하(δ -)를 띤다.

8. [출제의도] 화학 결합 모형 자료 분석하기

X~Z는 각각 Cl, Ca, K이다. 원자 번호는 Y > Z 이고, Z(s)는 전기 전도성이 있다. (r) 1 mol에 들어 있는 X⁻의 양과 (나) 1 mol에 들어 있는 전체 이온의 양은 2 mol로 같다.

9. [출제의도] 동적 평형 이해하기

2t일 때 동적 평형 상태에 도달하였으므로 b>a이다. $CO_2(g)$ 가 $CO_2(s)$ 로 승화되는 속도 는 t일 때가 $CO_2(s)$ 가 $CO_2(g)$ 로 승화되는 속도

2t일 때보다 작다. 3t일 때는 동적 평형 상태이다.

10. [출제의도] 원자의 주기적 성질 결론 도출하기 A~E는 각각 Mg. O. F. Al. Na이다. D는 3주기

원소이고 원자 반지름은 B > C이다. $\frac{M3}{M2}$ 이온화 에너지 = A > E이다.

11. [출제의도] 오비탈 양자수 자료 해석하기

2. 3주기 원소에서 n-l=2인 오비탈은 2s와 3p이고, n+l=3인 오비탈은 2p와 3s이다. A~C는 각각 Al, Ne, Cl이다. x = 2이고, 전자가 들어 있는 s오비탈 수는 A와 C가 같다. B에서 $l+m_l=2$ 인 오비탈은 l = 1, $m_l = 1$ 인 2p이다.

12. [출제의도] 루이스 전자점식 해석하기

X~Z는 각각 C, O, F이고 (가)~(다)는 각각 ${\sf OF}_2$, ${\sf O}_2{\sf F}_2$, ${\sf COF}_2$ 이다. 비공유 전자쌍 수는 (가)~(다)가 각각 8, 10, 8이므로 a는 4이다. 다중 결합이 있는 분자는 1가지(COF₂)이고, (나)에는 무극성 공유 결합이 있다.

13. [출제의도] 산화 환원 반응식 적용하기

산화제는 CIO $^-$ 이고 환원제는 $M(OH)_4^-$ 이므로 a:b= 2:3이다. 반응에서 증가한 산화수의 총합과 감소한 산화수의 총합은 같으므로 x = 4이고, c: d = 2:5이다. H_2O 1 mol이 생성될 때 $y = \frac{2}{5}$ 이다.

14. [출제의도] 수용액의 pH와 pOH 결론 도출하기

(가)~(다)는 각각 H₂O(l), NaOH(aq), HCl(aq)이다.

물질 (가)		(나)	(다)
рН	7.0	11.0	3.5
рОН	7.0	3.0	10.5

(다)에서 H₃O ⁺의 양(mol) <u>1×10^{-4.5}</u> (나)에서 OH⁻의 양(mol) = 1×10⁻⁵ > 1이다.

15. [출제의도] 중화 적정 실험 문제 인식하기

중화점에서 반응하는 CH3COOH의 양(mol)과 넣어준 NaOH의 영(mol)은 같으므로 $x=\frac{4d\times 10^{-3}}{0.2\times 10^{-3}}=20\,d$ 이다.

16. [출제의도] 동위 원소의 성질 자료 분석하기

A와 B의 중성자수(n)가 같고, c > d이므로 A~D는 다음과 같다.

원자	А	В	С	D
양성자수	n	n-1	n	n-1
중성자수	n	n	n+2	n+2

원자 번호는 X > Y이므로 A와 C는 X의 동위 원소이다. b + c = 73이므로 n은 18이다.

 $1 \text{ mol 의 D에 들어 있는 중성자수} = \frac{10}{9}$ 이다. 1 mol의 A에 들어 있는 중성자수

 $\frac{1}{9}$ g의 D에 들어 있는 양성자수 $=\frac{35}{27}$ 이다. 1 g의 B에 들어 있는 양성자수

17. [출제의도] 산화 환원 반응 실험 수행하기

 $nB^+ + C \rightarrow nB + C^{n+}$ 에서 증가한 산화수의 총합 $(4N \times n)$ 과 감소한 산화수의 총합 $(12N \times 1)$ 은 같 으므로 n = 3이고, B의 산화수는 감소한다. 실험 Ⅱ에서 C³⁺의 양(mol)은 4N이고 실험 I에서 전 체 양이온의 양(mol)이 8N이므로 다음과 같다.

m = 2이다.

18. [출제의도] 몰과 기체의 부피 관계 적용하기

(다)의 $\frac{Y}{X}$ 원자 수 = 8이므로 (다)에서 기체의 몰비는

XZ: Y₂Z = 1:4이다. (다)에서 XZ의 양(mol)을 a라 할 때 (가)~(다) 속 기체의 양(mol)은 다음과

L 1.				
실린더	(가)	(나)	(다)	
기체의 종류	X_2Y_2	X_2Y_2 Y_2Z	XZ Y ₂ Z	
기체의 양(mol)	4a	2a $6a$	a 4a	

실린더 속 기체의 부피는 (다)가 (가)보다 크다. (가)~(다)의 전체 기체의 질량은 (가):(나):(다) = $13 \times 4a : 10 \times 8a : 10 \times 5a$ 이므로 (나)가 가장 크 다. X~Z의 원자량을 각각 x, y, z라 하면 x:y:z= 12:1:16이다.

19. [출제의도] 화학 반응식의 양적 관계 자료 분석하기

주어진 자료에 따르면 다음과 같이 반응한다. 64w g A(g)의 양(mol)을 a, 56w g B(g)의 양(mol)을 b라 할 때 기체의 양(mol)은 다음과 같다.

실험ㅣ	A	+	2B	\rightarrow	2C
반응 전	a		b		
반응	$-\frac{1}{2}b$		-b		b
반응 후	$a-\frac{1}{2}b$				b
실험Ⅱ	A	+	2B	\rightarrow	2C
반응 전	$\frac{3}{2}a$		2b		
반응	-b		-2b		2b
반응 후	$\frac{3}{2}a-b$				2b

실험 I 과 II의 부피비는 $\frac{120w}{25}$: $\frac{208w}{26}$ = 3:5

이다. $a + \frac{1}{2}b : \frac{3}{2}a + b = 3 : 5$ 이므로 a = b이다. A~C의 분자량을 각각 MA, MB, MC라고 하면 $rac{32w}{\mathrm{M_A}}$: $rac{56w}{\mathrm{M_B}}$: $rac{88w}{\mathrm{M_C}}$ = 1 : 2 : 2 이므로 $\mathrm{M_A}$: $\mathrm{M_B}$: $\mathrm{M_C}$ = 8:7:11이다.

20. [출제의도] 산 염기 반응 탐구 설계하기

호한 저 수용액의 이온의 양(mmol)은 다음과 간다

七百万	선 가능력의 이번의 중(11111101)는 다음과 같다.						
혼합	HX(aq)		$H_2Y(aq)$		$Z(OH)_2(aq)$		
용액	H +	Χ-	H +	Y 2-	Z 2+	OH-	
(가)	20a	20a	2	1	40a	80a	
(나)	20 a	20a	6	3	$\frac{200}{3}a$	$\frac{400}{3}a$	
(다)	ba	ba	4	2	$\frac{80}{3}a$	$\frac{160}{3}a$	

주어진 조건에 따르면 (가)는 염기성, (나)는 산성 이다. 모든 양이온의 몰 농도(M) 합의 비는 (가):(나)

$$=\frac{40a}{60}:\frac{6-\frac{140a}{3}}{100}=10:11$$
이므로, $a=\frac{1}{20}$ 이다.
(다)는 산성이고, 모든 양이온의 몰 농도 합의 비는

$$()$$
 : $($ 다 $) = rac{1}{30}: rac{rac{b}{20} + rac{8}{3}}{40 + b} = 10: 19$ 이므로 $b = 10$

이다. 따라서 $a \times b = \frac{1}{2}$ 이다.