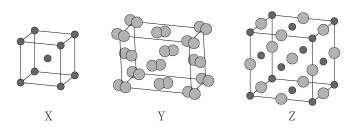
제 4 교시

과학탐구 영역(화학Ⅱ)

성명 수험 번호 제[]선택

1. 다음은 $NH_3(l)$ 와 $PH_3(l)$ 에 대한 설명이다.


PH3은 NH3보다 분자량이 크므로 분자 사이의 분산력은 $PH_3(l)$ 에서가 $NH_3(l)$ 에서보다 크지만, NH_3 분자 사이의 (가) 때문에 기준 끓는점은 NH₃(l)가 PH₃(l)보다 높다.

다음 중 (가)로 가장 적절한 것은?

- ① 이온 결합
- ② 수소 결합
- ③ 다중 결합

- ④ 금속 결합
- ⑤ 공유 결합

2. 그림은 고체 X~Z의 결정 구조를 모형으로 나타낸 것이다. $X \sim Z$ 는 각각 Na(s), NaI(s), $I_2(s)$ 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

---<보 기>-

- ㄱ. X는 Na(s)이다.
- L. Y는 공유 결정이다.
- 다. Z는 양이온과 음이온으로 이루어져 있다.
- ① L
- (2) L

- 3 7, 6 4 7, 6 5 7, 6, 6
- **3.** 다음은 A(g)로부터 B(g)가 생성되는 반응의 화학 반응식이다. 온도 T에서 정반응과 역반응의 활성화 에너지는 각각 260 kJ/mol과 245 kJ/mol이다.

$$A(g) \rightleftharpoons B(g)$$

표는 T에서 부피가 같은 2개의 강철 용기에 동일한 양의 A(g)를 각각 넣어 반응시킨 실험 I과 Ⅱ에 대한 자료이다. $v_2 > v_1$ 이다.

실험	첨가한 촉매	초기 반응 속도
I	없음	v_1
П	X(s)	v_2

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 일정하다.) [3점]

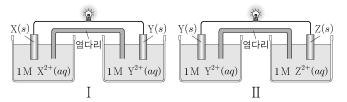
- ㄱ. 정반응은 흡열 반응이다.
- \cup . X(s)는 정촉매이다.
- ㄷ. Ⅱ에서 정반응의 활성화 에너지는 260 kJ/mol보다 크다.
- \bigcirc
- ② ⊏

- 3) 7, 6 4) 6, 5 7, 6, 6

4. 다음은 어떤 학생이 금속 X~Z의 이온화 경향을 학습한 후, 화학 전지를 이용하여 수행한 탐구 활동이다.

[학습 내용]

○ 금속의 이온화 경향: X>Y>Z


[가설]

○ 2가지 금속 전극으로 만든 화학 전지의 전지 반응이 진행될 때,

[탐구 과정]

(Y) 그림과 같이 $X(s) \sim Z(s)$ 를 전극으로 사용하여 화학 전지 Ⅰ과 Ⅱ를 만든다.

(나) 일정한 시간이 흐른 후, 전극의 질량 변화를 측정한다. [탐구 결과]

○ 질량이 감소한 전극

I: X(s) 전극, $\Pi: Y(s)$ 전극

[결론]

○ 가설은 옳다.

학생의 결론이 타당할 때, 이에 대한 설명으로 옳은 것만을 <보기> 에서 있는 대로 고른 것은? (단, X~Z는 임의의 원소 기호이다.)

-----<보 기>--

- ㄱ. '이온화 경향이 더 큰 금속 전극은 질량이 감소한다.'는 ①으로 적절하다.
- L. I 에서 X²⁺(aq)의 양(mol)은 증가한다.
- \Box . \Box 의 Z(s) 전극에서 환원 반응이 일어난다.
- ① ¬
- 2 =

- 37, 4 4, 5 7, 4, 5
- **5.** 다음은 25 ℃, 1 atm에서 H₂O과 관련된 3가지 열화학 반응식이다.

$$\circ H_2O(g) \to H_2O(l)$$

$$\Delta H = -44 \text{ kJ}$$

$$\circ 2H_2O(g) \rightarrow 2H_2(g) + O_2(g)$$
 $\Delta H = 484 \text{ kJ}$

$$\Delta H = 484 \text{ kJ}$$

$$\circ \ 2\mathrm{H}_2\mathrm{O}(\,l\,) \to 2\mathrm{H}_2(g) + \mathrm{O}_2(g) \hspace{0.5cm} \varDelta H = a\,\mathrm{kJ}$$

25 ℃, 1 atm에서 이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, H,O의 화학식량은 18이다.) [3점]

-----<보 기>-----

- ¬. 9 g의 H₂O(g)가 액화될 때 22 kJ의 열이 방출된다.
- ∟. H₂O(g)의 생성 엔탈피는 −484 kJ/mol이다.
- ㄷ. *a* < 484이다.
- 1 7
- 2 L
- 3 = 4 7, = 5 7, =

2 (화학Ⅱ)

과학탐구 영역

6. 다음은 NaCl의 전기 분해 실험이다. (가)와 (나)는 각각 NaCl(aq)과 NaCl(l) 중 하나이다.

[자료]

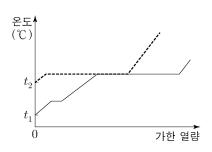
 \circ 환원되기 쉬운 경향: $\mathrm{H_2O}(l) > \mathrm{Na}^+(aq)$

[실험 과정 및 결과]

○ NaCl(aq)과 NaCl(l)을 각각 전기 분해한 결과, (+)극과 (-)극에서의 생성물은 표와 같았다.

(71-)	TT / \
(/ 1/	$H_2(g)$
(나) $\operatorname{Cl}_2(g)$	\bigcirc

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?


---<보 기>-

- ㄱ. (가)는 NaCl(aq)이다.
- ㄴ. ⑦은 H₂(g)이다.
- □ (나)의 전기 분해에서 생성된 양(mol)은 □이 Cl₂(g)보다 많다.
- ① ¬
- ② し ③ ⊏
- 4 7, 6 7, 6
- 7. 다음은 25 ℃, 1 atm에서 2가지 열화학 반응식과 4가지 결합의 결합 에너지이다.
 - \circ 2CH₄(g) + O₂(g) \rightarrow 2CH₃OH(g)
- $\Delta H = x \, kJ$
- $2CH_3OH(g) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(g)$ $\Delta H = -1352 \text{kJ}$

결합	C-H	C = O	O — H	O = O
결합 에너지(kJ/mol)	410	799	460	498

- 이 자료로부터 구한 x는?

- $\bigcirc 1 2956 \quad \bigcirc 2 252 \quad \bigcirc 3 154 \quad \bigcirc 4 \quad 252$
- (5) 2956
- 8. 그림은 외부 압력 1 atm에서 온도 동일한 질량의 C₂H₅OH을 초기 온도를 달리하여 각각 가열할 때, 가한 열량에 따른 C₂H₅OH의 온도 변화를 나타낸 것이다.

이에 대한 설명으로 옳은 것만을

<보기>에서 있는 대로 고른 것은? [3점]

----<보 기>-

- ㄱ. C₅H₅OH(*l*)의 기준 어는점은 *t*₅℃보다 낮다.
- ㄴ. t_2 ^{\circ}에서 $C_2H_5OH(l)$ 의 증기 압력은 1 atm보다 크다.
- $C. t_2$ °C, P atm에서 C_2 H₅OH이 기체일 때, P<1이다.
- ② L

- 37, 54, 57, 4, 5
- **9.** $1 \,\mathrm{M} \,\mathrm{A}(aq) \,200 \,\mathrm{mL}$ 에 $x \,\mathrm{g}$ 의 $\mathrm{A}(s)$ 를 녹인 후 물로 희석하여 만든 A(aq)의 부피, 몰랄 농도, 밀도는 각각 1L, 1m, 1.1 g/mL이다. x는? (단, A의 화학식량은 100이다.) [3점]
 - ① 80
- - 2 70
- 3 60
- **4** 50
- 5 40

- 10. 다음은 A와 B의 어는점 내림에 대한 자료이다. 용액 I 과 Ⅱ는 A(l)와 B(l)에 용질 X를 각각 녹인 용액이다.
- A(l)와 B(l)의 기준 어는점과 몰랄 내림 상수

액체	기준 어는점(℃)	몰랄 내림 상수(℃/m)
A(l)	5.5	5.1
B(l)	6.7	20.4

○ Ⅰ과 Ⅱ의 조성과 기준 어는점

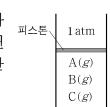
용액	조성	기준 어는점(℃)
I	A(l) 100 g + X 1 g	5.0
П	B(l) 50 g + X 1 g	a

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, X는 비휘발성, 비전해질이고, 용액은 라울 법칙을 따른다.)

- ¬. Ⅰ의 몰랄 농도는 0.1 *m* 보다 작다.
- ∟. *a* = 4.7이다.
- C. X의 화학식량은 102이다.
- ① ¬
- ② ⊏
- 3 7, 6 4 7, 6 5 6, 6
- **11.** 다음은 $H_2A^-(aq)$ 의 이온화 반응식과 t° 에서의 이온화 상수(K_2) 이다.

 $H_2A^-(aq) + H_2O(l) \implies HA^{2-}(aq) + H_3O^+(aq) \qquad K_2 = 1 \times 10^{-8}$

그림은 $t \, \mathbb{C}$ 에서 $1 \, \text{M} \, \text{NaH}_2 \text{A}(aq)$ 라 $1 \, \text{M} \, \text{Na}_2 \text{HA}(aq)$ 을 혼합하여 만든 수용액 (가)를 나타낸 것이다. (가)에 0.1 M HCl(aq) 1 mL를 첨가하여 수용액 (나)를, (나)에 0.1 M NaOH(aq) 1 mL를 첨가하여 수용액 (다)를 만든다.

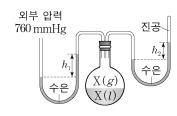

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 수용액의 온도는 일정하다.) [3점]

----<보 기>-

- ㄱ. (가)에서 pH > 7.0이다.
- $L. (나)에서 \frac{[HA^{2-}]}{[H_2A^{-}]} > 0.9$ 이다.
- □. H₂A⁻(aq)의 양(mol)은 (다)에서가 (나)에서보다 많다.
- \bigcirc
- ② L
- ③ ⊏
- 47, 67, 6
- **12.** 다음은 A(g)와 B(g)가 반응하여 C(g)가 생성되는 반응의 화학 반응식이다.

$$A(g) + B(g) \rightleftharpoons C(g)$$

그림은 온도 T에서 실린더에 $A(g) \sim C(g)$ 가 각각 1 mol씩 들어 있는 평형 상태를 나타낸 것이다. 외부 압력을 P atm으로 변화시켜 도달한 새로운 평형 상태에서 C의 몰 분율은 $\frac{1}{2}$ 이다.


P는? (단, 온도는 일정하고, 피스톤의 질량과 마찰은 무시한다.)

- ① $\frac{11}{4}$ ② $\frac{8}{3}$ ③ $\frac{7}{4}$ ④ $\frac{5}{3}$ ⑤ $\frac{3}{2}$

13. 다음은 X(l)와 Y(l)의 증기 압력과 관련된 실험이다.

[실험 과정]

(가) t° 에서 진공 상태의 플라스크에 X(l)를 넣은 후, 외부 압력이 760 mmHg일 때 그림과 같이 도달한 평형에서 수은 기둥의 높이차 h_1 과 h_2 를 측정한다.

(나) X(l) 대신 Y(l)를 사용하여 과정 (가)를 반복한다.

〔실험 결과〕

0 수은 기둥의 높이차

액체	$h_1(mm)$	$h_2(mm)$
X(l)	460	300
Y(1)	a	140

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 일정하고 수은의 증기 압력은 무시한다.) [3점]

- \neg . $a = 620 \circ \mid \Box$.
- L. 외부 압력이 770 mmHg일 때, X(l)를 사용한 실험에서 h₂ > 300이다.
- C. 외부 압력이 300 mmHg일 때, 끓는점은 Y(l)가 X(l)보다 높다.
- 1 L 37, 47, 57, 4, 5 ② ⊏

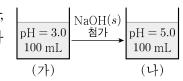
14. 다음은 A(g)로부터 B(g)와 C(g)가 생성되는 반응의 화학 반응식이다.

$$2A(g) \rightarrow bB(g) + C(g)$$
 (b는 반응 계수)

표는 온도 T에서 강철 용기에 A(g)의 압력이 1 atm이 되도록 넣은 후 반응이 진행될 때, 반응 시간(t)에 따른 C(g)의

t(s)	0	100	200
$P_{\rm C}({\rm atm})$	0	$\frac{1}{4}$	$\frac{3}{8}$

부분 압력 $(P_{\mathbb{C}})$ 을 나타낸 것이다. t=100 s일 때, B(g)의 부분 압력은 1 atm이다.

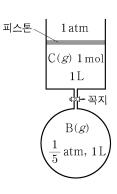

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 일정하다.)

- ㄱ. t = 200 s일 때, 혼합 기체의 압력은 $\frac{17}{8}$ atm이다.
- ㄴ. 순간 반응 속도는 $t = 100 \, \mathrm{S}$ 일 때가 $t = 200 \, \mathrm{S}$ 일 때의 2배
- ㄷ. 평균 반응 속도는 $t = 0 \sim 100 \text{ s}$ 동안이 $t = 0 \sim 200 \text{ s}$ 동안의 2배이다.
- 3 7, 6 4 6, 5 7, 6, 6 \bigcirc 2 =

15. 다음은 HA(aq)의 이온화 반응식과 이온화 상수(K_2)이다.

$$HA(aq) + H_2O(l) \rightleftharpoons A^-(aq) + H_3O^+(aq) \quad K_a$$

그림 (가)는 25 °C 의 0.3 M HA(aq)을, (나)는 (가)에 소량의 NaOH(s)을 첨가 하여 녹인 수용액을 나타낸 것이다.


이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 25 $^{\circ}$ C 에서 물의 이온화 상수 $(K_{\!\scriptscriptstyle \mathrm{W}})$ 는 1×10^{-14} 이고, 모든 수용액의 온도와 부피는 일정하다.)

- ㄱ. 25 ℃에서 $K_a = 3 \times 10^{-5}$ 이다.
- ㄴ. (나)에서 $\frac{[A^-]}{[HA]} = \frac{1}{3}$ 이다.
- \Box . (나)에 NaOH(s)을 추가로 녹여 $[Na^+] = 0.3 M$ 가 되도록 만든 수용액의 pH > 9.0이다.
- \bigcirc ② L (3) ⊏ 47, 5 5 4, 5

16. 다음은 A(g)와 B(g)가 반응하여 C(g)가 생성되는 반응의 화학 반응식과 온도 T에서 농도로 정의된 평형 상수(K)이다.

$$A(g) + B(g) \rightleftharpoons C(g)$$
 K

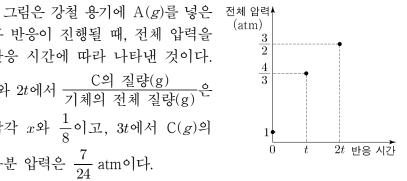
그림은 T에서 꼭지로 분리된 강철 용기와 $_{
m II}$ $_{
m Iatm}$ 실린더에 B(g)와 C(g)가 각각 들어 있는 초기 상태를 나타낸 것이다. 실린더에서 반응이 진행되어 평형 상태 I 에 도달하였을 때, 실린더 속 혼합 기체의 부피는 $\frac{5}{4}$ L이다. I 에서 피스톤을 고정하고 꼭지를 연 후, 새로운 평형 상태 Ⅱ에 도달하였다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도와 외부 압력은 일정하고, 연결관의 부피와 피스톤의 질량 및 마찰은 무시한다.) [3점]

-----<보 기>-

- $\neg K = 15$ 이다.
- ㄴ. I 에서 C(g)의 부분 압력은 $\frac{3}{5}$ atm이다.
- ㄷ. \prod 에서 A(g)의 양은 $\frac{1}{4}$ mol보다 작다.
- 2 = 3 7, 4 4 -, = 5 7, -, = \bigcirc

4 (화학Ⅱ)


과학탐구 영역

17. 다음은 A(g)로부터 B(g)와 C(g)가 생성되는 반응의 화학 반응식과 반응 속도식이다. k는 반응 속도 상수이다.

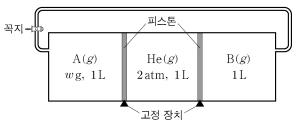
 $3A(g) \rightarrow bB(g) + cC(g)$ v = k[A] (b, c는 반응 계수)

후 반응이 진행될 때, 전체 압력을 반응 시간에 따라 나타낸 것이다. *t*와 2*t*에서 <u>C의 질량(g)</u> 은 기체의 전체 질량(g) 은

각각 x와 $\frac{1}{8}$ 이고, 3t에서 C(g)의 부분 압력은 $\frac{7}{24}$ atm이다.

 $b \times x$ 는? (단, 온도는 일정하다.) [3점]

- ① $\frac{1}{8}$ ② $\frac{1}{6}$ ③ $\frac{1}{4}$ ④ $\frac{1}{3}$ ⑤ $\frac{1}{2}$


18. 다음은 기체와 관련된 실험이다.

[화학 반응식]

 \circ $aA(g) + B(g) \rightarrow 2C(g)$ (a는 반응 계수)

[실험 과정]

(7) 그림과 같이 온도 T에서 꼭지와 피스톤으로 분리된 실린더에 A(g), B(g), He(g)을 넣는다.

- (나) 고정 장치를 모두 제거하고 충분한 시간이 흐른 후, He(g)의 부피(V_{He})를 측정한다.
- (다) 꼭지를 열어 반응이 완결되고 충분한 시간이 흐른 후, He(g)의 압력 (P_{He}) 을 측정한다.

[실험 결과]

- \circ (나) 과정 후 $V_{\rm He}$ 는 $\frac{4}{5}$ L이다.
- \circ (다) 과정 후 P_{He} 은 $\frac{5}{2}$ atm이고, 혼합 기체에서 $\mathrm{A}(g)$ 의 몰 분율은 <u>1</u>이다.
- (다) 과정 후 A(g)의 밀도(g/L)는? (단, 온도는 일정하고, 연결관의 부피와 피스톤의 마찰은 무시한다.)

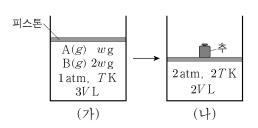
- ① $\frac{5}{66}w$ ② $\frac{5}{22}w$ ③ $\frac{5}{11}w$ ④ $\frac{5}{6}w$ ⑤ $\frac{5}{3}w$

19. 다음은 A(g)로부터 B(g)가 생성되는 반응의 화학 반응식과 반응 속도식이다. k는 반응 속도 상수이다.

$$2A(g) \rightarrow B(g) \quad v = k[A]$$

표는 A(g)와 B(g)의 혼합 기체를 강철 용기 (가)와 (나)에 각각 넣은 후 반응이 진행될 때, $\frac{B(g)$ 의 양(mol)}{A(g)의 양(mol)}을 반응 시간에 따라 나타낸 것이다. (가)와 (나)에서 온도는 각각 T_1 과 T_2 로 일정하고, (나)에서 반응 전 A(g)의 몰 분율은 $\frac{2}{3}$ 이다.

반응 시간		2t	3t
B(g)의 양(mol)	(フト)	7	$\frac{29}{2}$
A(g)의 양(mol)	(나)		$\frac{7}{2}$


이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

- ㄱ. $(가)에서 반응 전 A(g)의 몰 분율은 <math>\frac{1}{2}$ 이다.
- ㄴ. T_2 에서 이 반응의 반감기는 $\frac{3}{2}t$ 이다.
- $= T_2 > T_1$ 이다.
- ① ¬
- (2) L
- ③ ⊏
- ④ ¬, □ ⑤ □. □
- **20.** 다음은 A(g)로부터 B(g)가 생성되는 반응의 화학 반응식이다.

$$aA(g) \rightarrow B(g) (a$$
는 반응 계수)

그림 (Y)는 T K에서 실린더에 A(g)와 B(g)가 들어 있는 초기 상태를, (나)는 2TK에서 (가)의 피스톤 위에 추를 올려 외부 압력을 증가시킨 후 A(g)의 일부가 반응한 상태를 나타낸 것이다. (나)에서 A(g)의 부분 압력은 $\frac{2}{3}$ atm이다.

(나)에서 <u>B의 질량(g)</u> A의 질량(g) 은? [3점]

- 1 8
- 2 7
- 3 6
- **4** 5
- **⑤** 4

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인