제 4 교시

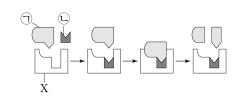
과학탐구 영역(생명과학 II)

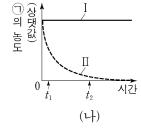
수험 번호 성명 제[]선택

1. 세포 연구에 이용되는 실험 방법 중 현미경을 이용한 방법과 자기 방사법에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

---<보 기>--

- ㄱ. 자기 방사법에는 방사성 동위 원소가 이용된다.
- ㄴ. 레이우엔훅이 미생물을 관찰하는 데 현미경을 이용하였다.
- ㄷ. 자기 방사법을 이용하여 세포 내 물질의 이동 경로를 추적할 수 있다.
- \bigcirc


- 2. 다음은 생명체에 있는 물질 □~□에 대한 자료이다. □~□은 DNA, 단백질, 스테로이드를 순서 없이 나타낸 것이다.
 - ¬과 □은 각각 호르몬의 성분이다.
 - 염색질(염색사)의 구성 성분에는 (L)과 (E)이 있다.


이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

----<보 기>-

- ㄱ. ⑦은 유기 용매에 녹는다.
- ㄴ. ○에는 펩타이드 결합이 있다.
- C. ©의 기본 단위는 뉴클레오타이드이다.
- \bigcirc
- ② ⊏

- 37, 4 4 4, 5 7, 4, 5
- 3. 그림 (가)는 효소 X에 의한 반응을, (나)는 X에 의한 반응에서 Ⅰ일 때와 Ⅱ일 때 시간에 따른 ①의 농도를 나타낸 것이다. ①과 Û은 각각 기질과 보조 인자 중 하나이고, I과 Ⅱ는 ○이 있을 때와 ○이 없을 때를 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외의 다른 조건은 동일하다.) [3점]

-----<보 기>-

- ¬. X는 이성질화 효소이다.
- L. I 은 ©이 없을 때이다.
- \Box . \Box 에서 X에 의한 반응의 활성화 에너지는 t_1 일 때가 t_2 일 때보다 크다.
- \bigcirc
- ② L
- ③ ⊏
- 4) 7, L (5) L, C

4. 표는 식물의 구성 단계 일부와 예를 나타낸 것이다. (가)~(다)는 기관, 세포, 조직을 순서 없이 나타낸 것이다.

구성 단계	예	
(가)	꽃	
(나)	?	
(다)	③표피 조직	

이에 대한 설명으로 옳은 것만을 <보기> 에서 있는 대로 고른 것은?

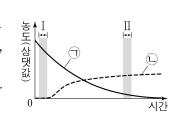
----<보 기>-

- ㄱ. (가)는 기관이다.
- ㄴ. 체관 세포는 (나)의 예이다.
- □. □은 기본 조직계에 속한다.
- ① ¬

- 2 = 3 7, L 4 L, E 5 7, L, E
- 5. 표 (가)는 세포막을 통한 물질 이동 방식의 특징을, (나)는 (가)의 특징 중 이동 방식 Ⅰ~Ⅲ의 특징의 개수를 나타낸 것이다. Ⅰ~Ⅲ은 능동 수송, 단순 확산, 촉진 확산을 순서 없이 나타낸 것이다.

특징
ATP가 사용된다. 막단백질을 이용한다. 저농도에서 고농도로 물질이 이동한다.
(7})

이동 방식	특징의 개수
I	0
П	3
Ш	a


(나)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

-----<보 기>-

- ㄱ. Ⅰ은 촉진 확산이다.
- L. @는 1이다.
- □. 폐포에서 모세 혈관으로의 O_2 이동 방식은 Ⅱ에 해당한다.

- 6. 그림은 O_2 와 포도당이 모두 포함된 배양액에 효모를 넣고 밀폐시킨 후, 시간에 따른 배양액 내 물질 ①과 ①의 농도를 나타낸 것이다. 귀과 따은 각각 에탄올과 포도당 중 하나이다.

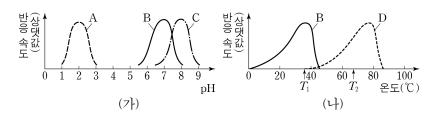
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

-----<보 기>----

- ¬. 단위 시간당 생성되는 ATP의 분자 수는 구간 Ⅰ에서가 구간 Ⅱ에서보다 많다.
- ㄴ. 구간 Ⅱ에서 기질 수준 인산화가 일어난다.
- □. 1분자의 □이 2분자의 □으로 전환되는 과정에서 2분자의 CO₂가 생성된다.
- 1 7

- 2 L 3 7, L 4 L, L 5 7, L, L

과


학

II

2 (생명과학 Ⅱ)

과학탐구 영역

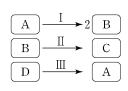
7. 그림 (가)는 효소 A~C에 의한 반응에서 pH에 따른 반응 속도를, (나)는 효소 B와 D에 의한 반응에서 온도에 따른 반응 속도를 나타낸 것이다. A~C는 사람의 소화 효소이고, D는 어떤 세균의 효소이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외의 다른 조건은 동일하다.)

-----<보 기>--

- □. A의 활성이 최대인 pH는 C의 활성이 최대인 pH보다 낮다.
- L. D의 활성은 40 ℃에서가 80 ℃에서보다 높다.
- \Box . (나)에서 B의 입체 구조는 T_1 일 때와 T_2 일 때가 서로 다르다.
- ① ¬
- (2) L

- 37, 5 4 4, 5 5 7, 6, 5
- 8. 그림 (가)와 (나)는 각각 세균과 식물 세포 중 하나이다.



이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

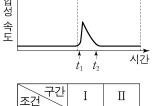
---<보 기>-

- ㄱ. (가)는 핵막을 갖는다.
- ㄴ. (나)는 세포벽을 갖는다.
- ㄷ. (가)와 (나)는 모두 리보솜을 갖는다.
- \bigcirc
- (2) L

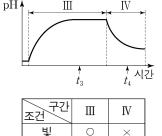
- 37, 5 4 4, 5 57, 4, 5
- 9. 그림은 세포 호흡에서 일어나는 과정 І~Ⅲ을, 표는 І~Ⅲ에서 물질 ①~②의 생성 여부를 나타낸 것이다. A~D는 과당 2인산, 아세틸 CoA, 포도당, 피루브산을 순서 없이 나타낸 것이고, 1분자당 탄소 수는 A와 D가 같다. ①~ ②은 ADP, ATP, CO₂, NADH를 순서 없이 나타낸 것이다.

물질 과정	9	(L)	(E)	2
I	×	?	?	×
П	?	0	×	0
Ш	0	?	a	?

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

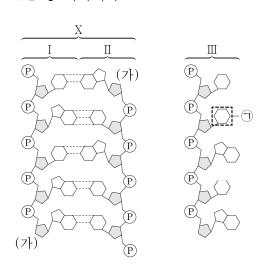

----<보 기>-

- ㄱ. ⓐ는 '×'이다.
- ㄴ. B는 아세틸 CoA이다.
- C. 1분자의 A로부터 2분자의 C가 생성되는 과정에서 2분자의 L이 생성된다.


각각 빛과 CO₂ 중 하나이다.

10. 그림 (가)는 어떤 식물에서 ③과 ⑤의 조건을 달리했을 때

시간에 따른 광합성 속도를, (나)는 이 식물에서 빛과 CO2 조건을 달리했을 때 스트로마에서의 pH 변화를 나타낸 것이다. ①과 L)은



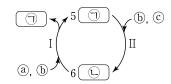
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 빛과 CO₂ 이외의 조건은 동일하다.) [3점]

----<보 기>-

- ㄱ. ⑦은 '빛'이다.
- ㄴ. 스트로마에서 $\frac{\text{NADP}^+}{\text{NADPH}}$ 의 양 $\frac{1}{5}$ 은 t_2 일 때가 t_1 일 때보다 크다.
- \Box . 틸라코이드 내부의 H^+ 농도는 t_3 일 때가 t_4 일 때보다 높다.
- ① ¬ 2 L
- 37, 5 4 4, 5 7, 6, 5

11. 그림은 5개의 염기쌍으로 이루어진 이중 가닥 DNA X와, X의 가닥 I과 Ⅱ 중 하나의 가닥과 상보적인 RNA 가닥 Ⅲ을 나타낸 것이다. X에서 아데닌(A)의 개수는 4개이고, (가)는 5' 말단과 3' 말단 중 하나이다.

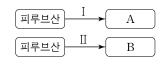
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?


-----<보 기>---

- ㄱ. (가)는 3' 말단이다.
- ∟. ⑦은 사이토신(C)이다.
- ㄷ. Ⅲ과 상보적인 가닥은 Ⅱ이다.

과학탐구 영역

생명과학 Ⅱ


12. 그림은 캘빈 회로에서 물질의 전환 과정을 나타낸 것이다. ①과 ○은 각각 3PG, PGAL, RuBP 중 하나이며, I은 ○이 ①으로, Ⅱ는 ⑦이 ①으로 전환되는 과정이다. ②~ⓒ는 ATP, CO₂, NADPH를 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

-----<보 기>-

- \neg . 1분자당 $\frac{\bigcirc$ 의 인산기 수 $=\frac{2}{3}$ 이다.
- ㄴ. Ⅱ에서 CO₂가 고정된다.
- ① ¬
- - 2 L 3 7, L 4 L, L 5 7, L, L
- 13. 그림은 발효에서 피루브산이 물질 A와 B로 전환되는 과정 I 과 Ⅱ를, 표는 I 과 Ⅱ에서 물질 ¬과 □의 생성 여부를 나타낸 것이다. A와 B는 젖산과 에탄올을 순서 없이 나타낸 것이고, □과 □은 CO₂와 NAD+를 순서 없이 나타낸 것이다.

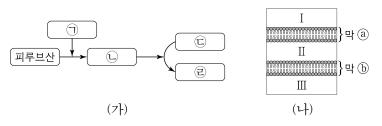
물질 과정	9	(L)
I	(a)	?
П	0	×

(○: 생성됨, ×: 생성 안 됨)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>-

- ㄱ. @는 '○'이다.
- L. 사람의 근육 세포에서 O₂가 부족할 때 Ⅱ가 일어난다.
- □. 1 분자당 탄소 수는 피루브산과 B가 같다.
- ① ¬
- 2 3 7, 4 -, 5 7, -, -
- 14. 다음은 엽록체를 갖는 녹조류와 산소의 동위 원소인 18 O를 이용한 광합성 실험이다.


[실험 과정 및 결과]

- (가) 녹조류가 들어 있는 플라스크에 ⑦ 이산화 탄소와 ^{□ 18}0로 표지된 물을 넣고 빛을 비춘다.
- (나) 광합성 결과 포도당, 산소, 물이 생성되었다.
- 이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

-----<보 기>--

- ㄱ. 광합성 과정에서 つ이 환원되었다.
- L. C의 광분해는 스트로마에서 일어났다.
- □ (나)의 광합성 생성물 중에는 ¹⁸O₂가 있다.
- 3) 7, 5 4) 4, 5 5, 4, 5 ① ¬ ② L

15. 그림 (가)는 세포 호흡 과정의 일부를, (나)는 (가)의 과정이 일어나는 세포의 일부를 나타낸 것이다. 막 @와 b는 미토콘드리아의 내막과 외막을 순서 없이 나타낸 것이고, 해당 과정은 Ⅲ에서 일어난다. ①~②은 시트르산, 아세틸 CoA, 옥살아세트산, 조효소 A(CoA)를 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

--<보 기>-

- ㄱ. ⑦은 아세틸 CoA이다.
- ㄴ. @는 미토콘드리아 외막이다.
- □. □이 ②로 전환되는 과정은 Ⅰ에서 일어난다.

- 16. 다음은 어떤 세포에서 복제 중인 이중 가닥 DNA W에 대한 자료이다.
 - W는 서로 상보적인 단일 가닥 W₁과 W₂로 구성되어 있다. ○ DNA w는 W₁의 일부이며, 26개의 염기로 이루어져 있고 염기 서열은 다음과 같다. ①과 ①은 각각 아데닌(A), 구아닌(G), 사이토신(C), 타이민(T) 중 하나이다.

CATGAA®®©CGTGCGG®©©©AGATG

- w를 주형으로 하여 지연 가닥이 합성되는 과정에서 2개의 가닥 Ⅰ과 Ⅱ가 합성된다.
- w와 I 사이의 염기쌍의 개수는 12 개이고, w와 II 사이의 염기쌍의 개수는 14개이다.
- 프라이머 X는 I에, 프라이머 Y는 II에 존재한다. X와 Y는 각각 4개의 염기로 구성되며, X와 Y에 있는 유라실(U)의 개수는 각각 1 개이다.
- w와 I 사이의 염기 간 수소 결합의 총개수는 29 개이고, Ⅱ에서 퓨린 계열 염기의 개수는 3개이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.)

-----<보 기>---

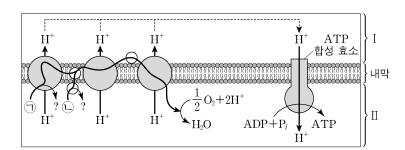
- □. Ⅰ에서 퓨린 계열 염기의 개수는 3개이다.
- ㄴ. Ⅱ가 Ⅰ보다 먼저 합성되었다.
- ㄷ. ①은 사이토신(C)이다.

4 (생명 과학 Ⅱ)

과학탐구 영역

17. 그림은 야생형 대장균의 젖당 오페론과 젖당 오페론을 조절하는 조절 유전자를, 표는 야생형 대장균, 돌연변이 대장균 A와 B를 포도당은 없고 젖당이 있는 배지에서 각각 배양했을 때 억제 단백질과 젖당 분해 효소의 생성 여부를 나타낸 것이다. □~□은 젖당 오페론의 작동 부위, 젖당 오페론의 프로모터, 젖당 오페론을 조절하는 조절 유전자를 순서 없이 나타낸 것이다. A는 ①~ © 중 하나가, B는 그 나머지 중 하나가 결실된 돌연변이이다.

대장균	억제 단백질	젖당 분해 효소
야생형	0	0
A	0	×
В	×	0


(○: 생성됨, ×: 생성 안 됨)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않으며, 야생형 대장균, A, B의 배양 조건은 동일하다.) [3점]

-----<보 기>--

- ㄱ. B는 ⑦이 결실된 돌연변이이다.
- ∟. A의 억제 단백질은 Û에 결합한다.
- C. 젖당 분해 효소의 아미노산 서열은 ©에 암호화되어 있다.
- ① ¬ (2) L ④ ¬. ∟ ⑤ ¬. ⊏ ③ ⊏

18. 그림은 전자 전달이 활발하게 일어나고 있는 미토콘드리아 내막의 전자 전달계를 나타낸 것이다. ⊙과 Û은 각각 FADH2와 NADH 중 하나이고, Ⅰ과 Ⅱ는 각각 미토콘드리아 기질과 막 사이 공간 중 하나이다. 물질 A는 미토콘드리아 내막에 있는 인지질을 통해 H⁺을 새어 나가게 하여 ATP 합성을 저해한다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

---<보 기>-

- ㄱ. ㈜은 NADH이다.
- \cup . $\frac{I}{\Pi}$ $\frac{1}{1}$ $\frac{1}{1}$
- □. □ 1분자와 □ 1분자로부터 각각 전자 전달계를 거쳐 $\frac{1}{2}$ O₂로 전달되는 전자의 개수는 같다.
- \bigcirc
- 2 L

- 37, = 4 = 57, = 5

- 19. (가)~(다)는 생명 과학의 주요 성과이다.
 - (가) 왓슨과 크릭은 DNA의 이중 나선 구조를 알아내었다.
 - (나) 생명 과학자 ①은 초파리를 이용한 유전 실험을 통해 유전자가 염색체에 존재한다는 것을 처음으로 알아내었다.
 - (다) 사람 유전체 사업을 통해 사람 유전체의 염기 서열을 알아 내었다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

-----<보 기>-----

- ㄱ. (가)에 DNA의 X선 회절 사진이 활용되었다.
- ㄴ. ⑦은 멘델이다.
- ㄷ. (가)~(다) 중 가장 먼저 이루어진 성과는 (나)이다.
- ① ¬
- ② L
- ③ ⊏
- 4) 7, 6 5 4, 6
- **20.** 다음은 어떤 진핵생물의 유전자 x와, x에서 돌연변이가 일어난 유전자 y, z의 발현에 대한 자료이다.
 - *x*, *y*, *z*로부터 각각 폴리펩타이드 X, Y, Z가 합성된다. X, Y, Z의 아미노산 개수는 각각 5개, 7개, 8개이다.
 - o X의 아미노산 서열은 다음과 같다.

메싸이오닌-타이로신-글리신-트레오닌-아르지닌

 \circ v는 x에서 1개의 염기쌍이 삽입된 것이다. Y의 아미노산 서열은 다음과 같다.

메싸이오닌-발린-트립토판-아스파트산-라이신-발린-🗇 트레오닌

○ z는 x에서 1개의 염기쌍이 결실된 것이다. Z의 아미노산 서열은 다음과 같다.

메싸이오닌-타이로신-(가)-라이신-글리신-아스파라진-아이소류신-세린

표는 유전부호를 나타낸 것이다.

UUU 페닐알라닌	UCU	UAU HAC 타이로신	UGU
UUC Maari	UCC 세린	UAC GOLL	UGC ALLIE
UUA 류신	UCA ^11El	UAA 종결 코돈	UGA 종결 코돈
UUG TO	UCG	UAG 종결 코돈	UGG 트립토판
CUU	CCU	CAU	CGU
CUC 류신	CCC 프롤린	CAC OLLIN	CGC 아르지닌
CUA #2	CCA ==	CAA 글루타민	CGA GEAL
CUG	CCG	CAG = FIFE	CGG
AUU	ACU	AAU	AGU AGU 세린
AUC 아이소류신	ACC 트레오닌	AAC	AGC AID
AUA	ACA ECITE	AAA 라이신	AGA 아르지닌
AUG 메싸이오닌	ACG	AAG	AGG
GUU	GCU	GAU GAC	GGU
GUC 발린	GCC 알라닌	GAC	GGC 글리신
GUA HO	GCA HO	GAA 글루탐산	GGA ^{클디션}
GUG	GCG	GAG 글루딤산	GGG

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 핵산 염기 서열 변화는 고려 하지 않는다.) [3점]

-----<보 기>-

- ㄱ. (가)는 아르지닌이다.
- ∟. □을 암호화하는 코돈의 염기 서열은 ACA이다.
- 다. X와 Y가 합성될 때 사용된 종결 코돈의 염기 서열은 같다.
- \bigcirc
- ② L
- ③ ⊏
- 4 7, 6 5 4, 5

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.