화학Ⅱ 정답

1	1	2	(5)	3	4	4	1	5	3
6	2	7	3	8	4	9	3	10	2
11	4	12	(5)	13	1	14	3	15	4
16	(5)	17	3	18	(5)	19	2	20	4

해 설

1. [출제의도] 물의 광분해를 이해한다.

물의 광분해로 산소, 수소 기체를 얻을 수 있다.

2. [출제의도] 반응 엔탈피를 이해한다.

ㄴ. ${\rm CO}_2(g)$ 의 생성 엔탈피는 ${\rm C}(s,$ 흑연)의 연소 반응의 반응 엔탈피와 같다.

3. [출제의도] 분자 사이의 상호작용을 이해한다.

ㄴ. 끓는점이 높을수록 액체 분자 사이의 인력이 크 다. ㄷ. $H_2Y(l)$ 는 $H_2O(l)$ 이다.

4. [출제의도] 반응 속도식을 이해한다.

ㄱ. A(g)의 초기 농도가 2배 증가하면 초기 반응 속도는 4배 증가하므로 m=2이다.

5. [출제의도] 화학 전지를 이해한다.

두 전지에서 X와 Z는 산화되고, Y+은 환원된다.

6. [출제의도] 용액의 농도를 이해한다.

A, B의 화학식량을 각각 $M_{\rm A}$, $M_{\rm B}$ 라고 하면 몰랄 농 도 비는 ${\rm A}(aq):{\rm B}(aq)=\frac{20}{0.08\,M_{\rm A}}:\frac{30}{0.07\,M_{\rm B}}=7:8$ 이다. 따라서 A, B의 화학식량 비는 2:3이다.

7. [출제의도] 반응 속도와 활성화 에너지를 이해한다.

ㄱ. Π 와 Π 에서 $v_2>v_3$ 이므로 $T_1>T_2$ 이다. $\begin{tabular}{ll} [오답풀이] \ \ \, \cup . I 과 Π 에서 촉매를 첨가한 Π 의 활성화 에너지가 더 크므로 $X(s)$는 부촉매이다. \end{tabular}$

8. [출제의도] 상평형을 이해한다.

ㄴ. CO_2 는 삼중점에서 온도와 압력이 각각 t_1 $^{\circ}$, P_1 atm이고, t_1 $^{\circ}$, P_2 atm에서 기체이므로 $P_1 > P_2$ 이다. [오답풀이] ㄱ. H_2O 이 t_1 $^{\circ}$, P_2 atm에서 고체이고, t_2 $^{\circ}$, P_2 atm에서 액체이므로 $t_2 > t_1$ 이다.

9. [출제의도] 고체 결정 구조를 이해한다.

X는 체심 입방 구조, Y는 단순 입방 구조, Z는 면심 입방 구조이고, a = 1, b = 4이다.

10. [출제의도] 액체의 증기 압력을 이해한다.

 P_1 atm에서 끓는점은 A(l)>B(l)이므로 같은 온도에서 증기 압력은 B(l)>A(l)이고, $P_2>P_1$ 이다. P_2 atm에서 A(l)의 끓는점인 t_2 C는 t_1 C보다 높다.

11. [출제의도] 결합 에너지를 이해한다.

 $2\text{H}_2\text{O}_2(g) \rightarrow 2\text{H}_2\text{O}(g) + \text{O}_2(g)$ 의 $\Delta H = x - 104$ = $2 \times 180 - 498$ 이므로 x = -34이다.

12. [출제의도] 1차 반응을 이해한다.

반감기는 t이므로 t일 때 $[A] \sim [C]$ 는 각각 1.6 M, 3.2 M, 0.8 Mol고, b = 4이다. 2t일 때 [A]는 초기 농도의 0.25배인 0.8 Mol고 [B]는 4.8 Mol다.

13. [출제의도] 화학 평형의 원리를 이해한다.

ㄱ. 분자량 비는 A:B=2:1이므로 (가)에서 초기 농도 비는 $A(g):B(g)=\frac{2}{2}:\frac{8}{1}=0.25:2$ 이다.

[오답풀이] ㄴ. (가)에서 Q < K이므로 평형에 도달하기 전까지 정반응이 우세하게 진행된다. ㄷ. x = 50이다.

14. [출제의도] 완충 용액을 이해한다.

ㄱ. (가)에서 $\frac{[A^-][H_3O^+]}{[HA]} = K_a$ 이고 HA(aq)의 농도가 0.1 M이므로 $[H_3O^+] = 2 \times 10^{-3}$ M이다. ㄴ. (나)는 (가)에 약산 HA의 짝염기인 A^- 을 첨가하였으므로 완충 용액이다.

15. [출제의도] 용액의 증기 압력 내림을 이해한다.

중기 압력 내림이 x mmHg일 때 물의 양(mol)이 n이면 $\frac{0.1}{n+a+0.1}=\frac{1}{150}, \ \frac{0.1}{n+3a+0.1}=\frac{1}{250}$ 이다. $n=9.9,\ a=5$ 이고 $x=\frac{0.1k}{n+0.1}=\frac{k}{100}$ 이다.

16. [출제의도] 기체의 성질을 이해한다.

(가)와 (나)에 들어 있는 각 기체의 압력, 양(mol), 분자량은 다음과 같다.

용기	(가) (나)		+)
기체	A(g)	B(g)	C(g)
압력(atm)	P	1.5P	P
양(mol)	3n	6n	4n
분자량	4M	2M	3M

17. [출제의도] 평형 이동의 원리를 이해한다.

 (γ) 와 (γ) 에서 각각 평형 상태에 도달하였을 때 $A(g) \sim C(g)$ 의 몰 농도는 다음과 같다.

용기	몰 농도(M)				
5/1	A(g)	B(g)	C(g)		
(가)	0.2	0.2	0.2		
(나)	0.2	0.4	0.4		

ㄱ.
$$K = \frac{(0.2)^2}{0.2 \times (0.2)^2} = 5$$
이다. ㄴ. (나)에서 $C(g)$

의 초기 농도는 0.8 M이므로 x = 1.6이다.

[**오답풀이**] ㄷ. 평형 상태에서 꼭지를 열었을 때 평형은 이동하지 않고, 온도를 높이면 역반응 쪽으로 평형이 이동하여 새로운 평형에서 [B] > [C]이다.

18. [출제의도] 산 염기 평형을 이해한다.

 $\mathrm{HA}(aq)$ 에서 $\frac{[\mathrm{HA}]}{[\mathrm{A}^-]} \times K_\mathrm{a} = [\mathrm{H}_3\mathrm{O}^+]$ 이므로 b = 0.5이다. $\mathrm{HB}(aq)$ 에서 $b \times K_\mathrm{a} = 2 \times 10^{-5}$ 이므로 HB 의 $K_\mathrm{a} = 4 \times 10^{-5}$ 이다. B^- 의 이온화 상수 (K_b) 는 0.25×10^{-9} 이고 0.1 M $\mathrm{NaB}(aq)$ 의 $\mathrm{pH} < 9$ 이다.

19. [출제의도] 1차 반응을 이해한다.

 t_1 일 때 기체의 몰 비가 A(g):B(g)=2:3이므로 반감기는 $0.5t_1$ 이고, 기체의 압력이 $\frac{5}{4}$ atm이므로 P는 2 atm이다. t_2 는 반감기의 3배이고 $x=\frac{2}{9}$ 이다.

20. [출제의도] 기체의 성질을 이해한다.

(가)에서 A(g)의 양(mol)을 xn이라고 하면 (나)에서 반응이 완결된 후 B(g)의 양(mol)은 $2n-\frac{2}{3}bn$ = 0이므로 b=3이다. (다)에서 반응 전과 후의 기체의 양(mol)은 다음과 같다.

기체	기체의 양(mol)			
/ /	반응 전	반응 후		
A(g)	$(\frac{1}{2}x - \frac{1}{3})n$	0		
B(g)	Vn	$(V - \frac{3}{2}x + 1)n$		
C(g)	$\frac{2}{3}n$	xn		

반응 후 $\mathrm{B}(g)$ 와 전체 기체의 양(mol)은 각각 $\frac{1}{3} \times \frac{V+2}{2}n$, $\frac{V+2}{2}n$ 이므로 V=x, V=1이다.