● 과학탐구 영역 ●

화학Ⅱ 정답

1	1	2	2	3	1	4	(5)	5	4
6	(5)	7	3	8	4	9	2	10	(5)
11	(5)	12	4	13	3	14	2	15	1
16	1	17	3	18	(5)	19	3	20	(2)

해 설

1. {출제의도}

수소 연료 전지를 이해한다.

수소 연료 전지에서 반응이 일어나면 물이 생성된 다

2. {출제의도}

반응 속도와 활성화 에너지를 이해한다.

촉매는 반응의 활성화 에너지를 변화시킨다.

3. {출제의도}

분자 간 상호 작용을 이해한다.

 $(가)\sim$ (다)는 각각 C_2H_5OH , C_2H_4 , CH_3OCH_3 이 다

{오답풀이}

□. (가)~(다)는 모두 액체 상태에서 분산력이 작용한다.

4. {출제의도}

기체의 성질을 이해한다.

ㄴ. 일정량의 $\mathbf{X}(g)$ 의 압력은 (밀도 \times 절대 온도)에 비례하므로 P_1 : P_2 = $2\,T$: $3\,T$ = 2 : 3이다.

5. {출제의도}

액체의 중기 압력을 이해한다.

□. 0.1 atm에서 C의 끓는점이 -18 ℃이므로
 25 ℃, 0.1 atm에서 C의 안정한 상은 기체이다.
 {오답풀이}

ㄴ. 기준 끓는점이 B > C이므로 분자 사이의 인력은 $\mathrm{B}(l)$ > $\mathrm{C}(l)$ 이다.

6. {출제의도}

고체 결정의 종류와 구조를 이해한다.

정육면체 모양의 단위 세포 속에 포함된 원자 수가 2인 금속 M 결정은 체심 입방 구조이다.

7. {출제의도}

엔탈피와 결합 에너지를 이해한다.

ㄷ. O-H 결합의 결합 에너지를 x kJ/mol이라고 하면, $4H_2(g)+2O_2(g)\to 4H_2O(g)$ 반응의 반응 엔탈피는 (4c+2d-8x) kJ이고, 4c+2d-8x=a-b이다.

{오답풀이}

ㄴ. $\mathrm{H_2O}(\mathit{g})$ 의 생성 엔탈피는 $\dfrac{a-b}{4}$ kJ/mol이다

8. {출제의도}

1차 반응을 이해한다.

([A] + [B])의 증가량은 0 ~ t, t ~ 2t에서 각각 1 M, 0.5 M이므로 1차 반응이고, x = 3.75, b = 2이다.

9. {출제의도}

상평형 그림을 이해한다.

1 atm에서 H_2O 의 녹는점과 끓는점의 차가 100이고, P_B atm에서 녹는점 $(t_1 \ ^{\circ}C)$ 과 끓는점의 차가 100보다 크므로 $P_B > 1$ 이다. 이때 $t_1 < 0$ 이고, $t_1 \ ^{\circ}C$, P_A atm에서 H_2O 의 안정한 상은 기체이므로 $P_A < a$ 이다.

10. {출제의도}

삼투압을 이해한다.

묽은 용액의 삼투압은 (몰 농도 \times 절대 온도)에 비례한다. T_1 K에서의 삼투압 비는 (가) : (나) = 9 : 10이므로 수용액에 들어 있는 용질의 몰비는 A : B = 9 : 10이고, 분자량 비는 A : B = 5 : 9이다. 삼투압 비는 (가) : (나) = 9 : 10 = 10 : x이므로 x = $\frac{100}{9}$ 이다.

11. {출제의도}

산 염기 평형을 이해한다.

25 \mathbb{C} 에서 $\mathrm{NH_3}$ 의 이온화 상수 (K_b) 가 2×10^{-5} 이므로 $\mathrm{NH_4^+}$ 의 이온화 상수 (K_a) 는 5×10^{-10} 이고, 0.1 M $\mathrm{NH_3}(aq)$ 의 pH는 11보다 크다.

12. {출제의도}

화학 전지를 이해한다.

다. 금속의 이온화 경향 크기는 A > B이므로 (가)에서 A와 B를 도선으로 연결하면 B에서 수소 기체가 발생한다.

13. {출제의도}

완충 용액을 이해한다.

첨가한 NaOH이 HA 0.02 mol과 반응하여 $[HA] = [A^-]$ 이므로, NaOH의 양은 0.01 mol 이고 x = 0.4이다. $\frac{[A^-]}{[OH^-]} = \frac{[A^-][H_3O^+]}{[OH^-][H_3O^+]} = \frac{K_a}{K} \times [HA]$ 이다.

14. {출제의도}

헤스 법칙을 이해한다.

 $2{
m NO}(g) + {
m O}_2(g) o 2{
m NO}_2(g)$ 반응의 반응 엔 탈피를 x kJ이라고 하면 a-2x=-4b+6c+4d이고, $x=\frac{a}{2}+2b-3c-2d$ 이다.

15. {출제의도}

1차 반응을 이해한다.

반감기는 t이고, 반응 시간에 따른 A \sim C의 양 (mol)은 다음과 같다.

반응 시간	기체의 양(mol)					
민궁 시신	A(g)	B(<i>g</i>)	C(g)			
0	8	9	1			
t	4	11	5			
2t	2	12	7			
3 <i>t</i>	1	12.5	8			

16. {출제의도}

평형 이동의 원리를 이해한다.

반응물과 생성물의 계수 합이 같으므로 전체 기체의 양(mol)은 변하지 않고, 몰 농도를 몰 분율로 대신하여 평형 상수를 구할 수 있다. 평형 상태 I 과 II에서 기체의 몰 분율과 평형 상수는 다음과 같다.

평				
형				W
평 형 상 태	A(<i>g</i>)	B(<i>g</i>)	C(<i>g</i>)	K
태				
I	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{9}{4}$
II	$\frac{1}{6}$	$\frac{5}{12}$	$\frac{5}{12}$	$\frac{25}{4}$

{오답풀이}

ㄴ. 온도는 $T_2 > T_1$ 이고, 평형 상수는 $K_2 > K_1$ 이므로 $\Delta H > 0$ 이다.

17. {출제의도}

용액의 증기 압력 내림을 이해한다.

ㄱ. 분자량은 B가 A의 3배이므로 (가)는 B(aq), (나)는 A(aq)이다. ㄴ. ①에서 용액의 증기 압력이 0.9P atm이므로 몰 비는 H_2O : A = 9:1이다.

{오답풀이}

□. x = 0.75이다.

18. {출제의도}

온도와 반응 속도의 관계를 이해한다.

실험 I 과 II에서 반감기는 각각 3 min, 2 min이 므로 x=4이고, 12 min일 때 [A]는 실험 I 과 II에서 각각 $6\times(\frac{1}{2})^4$ M, $4\times(\frac{1}{2})^6$ M이다.

19. {출제의도}

화학 평형의 원리를 이해한다.

ㄱ, ㄴ. (가)에서 평형에 도달하였을 때 A \sim C 의 양은 각각 2 mol로 같고, $K=\frac{1}{4}$ 이다.

{오답풀이}

다. (나)에서 반응 지수 $Q = \frac{4}{9}$ 이고, Q가 K보다 크므로 역반응이 우세하게 진행된다.

20. {출제의도}

기체의 성질을 이해한다.

실험 I 에서 (다) 과정 후 C의 양(mol)을 2n이라고 하면, 반응 전 A, B의 양(mol)은 각각 2n, 4n이다. 따라서 $\frac{PV}{6nT}=\frac{1\times 4V}{3n\times 1.5T}$ 이고, $P=\frac{16}{3}$ 이다. 실험 II에서 (다) 과정 후 C의 양(mol)은 2m이라고 하면, 반응 전 A, B의 양(mol)은 각각 2m, 10m이다. $\frac{16}{3}\times\frac{V}{12mT}=\frac{1\times (2+x)V}{9m\times 1.5T}$ 이고, x=4이다. 따라서 $\frac{x}{P}=\frac{3}{4}$ 이다.